module Cat.Instances.Slice.Limit where
Arbitrary limits in slicesπ
Suppose we have some really weird diagram in a slice category, like the one below. Well, alright, itβs not that weird, but itβs not a pullback or a terminal object, so we donβt a priori know how to compute its limit in the slice.
The observation that will let us compute a limit for this diagram is inspecting the computation of products in a slice. To compute the product of and we had to pass to a pullback of in β which we had assumed exists. But! Take a look at what that diagram looks like:
We βexplodedβ a diagram of shape to one of shape This process can be described in a way easier to generalise: We βexplodedβ our diagram to one indexed by a category which contains contains an extra point, and has a unique map between each object of β the join of these categories.
module _ {o β o' β'} {C : Precategory o β} {J : Precategory o' β'} {o : β C β} (F : Functor J (Slice C o)) where open Terminal open /-Obj open /-Hom private module C = Cat.Reasoning C module J = Cat.Reasoning J module C/o = Cat.Reasoning (Slice C o) module F = Functor F
Generically, if we have a diagram we can βexplodeβ this into a diagram compute the limit in then pass back to the slice category.
F' : Functor (J β β€Cat) C F' .Fβ (inl x) = F.β x .domain F' .Fβ (inr x) = o F' .Fβ {inl x} {inl y} (lift f) = F.β f .map F' .Fβ {inl x} {inr y} _ = F.β x .map F' .Fβ {inr x} {inr y} (lift h) = C.id F' .F-id {inl x} = ap map F.F-id F' .F-id {inr x} = refl F' .F-β {inl x} {inl y} {inl z} (lift f) (lift g) = ap map (F.F-β f g) F' .F-β {inl x} {inl y} {inr z} (lift f) (lift g) = sym (F.Fβ g .commutes) F' .F-β {inl x} {inr y} {inr z} (lift f) (lift g) = C.introl refl F' .F-β {inr x} {inr y} {inr z} (lift f) (lift g) = C.introl refl limit-aboveβlimit-in-slice : Limit F' β Limit F limit-aboveβlimit-in-slice lims = to-limit (to-is-limit lim) where module lims = Limit lims open make-is-limit apex : C/o.Ob apex = cut (lims.Ο (inr tt)) nadir : (j : J.Ob) β /-Hom apex (F .Fβ j) nadir j .map = lims.Ο (inl j) nadir j .commutes = lims.commutes (lift tt) module Cone {x : C/o.Ob} (eps : (j : J.Ob) β C/o.Hom x (F .Fβ j)) (p : β {i j : J.Ob} β (f : J.Hom i j) β F .Fβ f C/o.β eps i β‘ eps j) where Ο : (j : J.Ob β β€) β C.Hom (x .domain) (F' .Fβ j) Ο (inl j) = eps j .map Ο (inr _) = x .map Ο-commutes : β {i j : J.Ob β β€} β (f : βHom J β€Cat i j) β F' .Fβ f C.β Ο i β‘ Ο j Ο-commutes {inl i} {inl j} (lift f) = ap map (p f) Ο-commutes {inl i} {inr j} (lift f) = eps i .commutes Ο-commutes {inr i} {inr x} (lift f) = C.idl _ Ο-factor : β (other : /-Hom x apex) β (β j β nadir j C/o.β other β‘ eps j) β (j : J.Ob β β€) β lims.Ο j C.β other .map β‘ Ο j Ο-factor other q (inl j) = ap map (q j) Ο-factor other q (inr tt) = other .commutes lim : make-is-limit F apex lim .Ο = nadir lim .commutes f = ext (lims.commutes (lift f)) lim .universal {x} eps p .map = lims.universal (Cone.Ο eps p) (Cone.Ο-commutes eps p) lim .universal eps p .commutes = lims.factors _ _ lim .factors eps p = ext (lims.factors _ _) lim .unique eps p other q = ext $ lims.unique _ _ (other .map) (Cone.Ο-factor eps p other q)
In particular, if a category is complete, then so are its slices:
is-completeβslice-is-complete : β {β o o' β'} {C : Precategory o β} {c : β C β} β is-complete o' β' C β is-complete o' β' (Slice C c) is-completeβslice-is-complete lims F = limit-aboveβlimit-in-slice F (lims _)