module Cat.Instances.Sheaves.Limits where
Limits of sheavesπ
This module proves that sheaves are closed under arbitrary limits, without regard for the size of the indexing category, independently of whether we are talking about sheaves on a site or functors that satisfy the sheaf condition for individual sieves.
This is a simultaneous specialisation and generalisation of the proof that monadic functors create limits. Itβs a specialisation in the sense that the same strategy there works here; but itβs a generalisation in the sense that sheaves for an individual sieve are not the algebras for any monad.
Regardless, if we are talking about the topos of sheaves, we can obtain an abstract proof of its completeness through monadicity, without having to do the componentwise work here.
is-sheafβ-limit : β {o β o' β'} {C : Precategory o β} {D : Precategory o' β'} β β (F : Functor D (PSh β C)) L Ο β is-limit F L Ο β β {U} (R : Sieve C U) β (β d β is-sheafβ (F # d) R) β is-sheafβ L R is-sheafβ-limit {C = C} {D} F L Ο lim {U} R F-sheaf ps = from-is-separatedβ L sep sec where open Precategory C module lim = is-limit lim module F x = PSh (F .Fβ x) module L = PSh L abstract sep : is-separatedβ L R sep {x} {y} loc = unyo-path $ lim.uniqueβ {x = γβ C U} _ (Ξ» f β yo-natl (sym (Ο .is-natural _ _ _ Ξ·β _ $β _))) (Ξ» j β yo-natl refl) (Ξ» j β yo-natl (is-sheafββis-separatedβ _ _ (F-sheaf j) Ξ» f hf β F.β j f (Ο .Ξ· j .Ξ· U y) β‘Λβ¨ Ο .Ξ· j .is-natural _ _ _ $β _ β©β‘Λ Ο .Ξ· j .Ξ· _ (L.β f y) β‘Λβ¨ ap (Ο .Ξ· j .Ξ· _) (loc f hf) β©β‘Λ Ο .Ξ· j .Ξ· _ (L.β f x) β‘β¨ Ο .Ξ· j .is-natural _ _ _ $β _ β©β‘ F.β j f (Ο .Ξ· j .Ξ· U x) β)) ps' : β j β Section (F # j) (map-patch (Ο .Ξ· j) ps) ps' j = F-sheaf j (map-patch (Ο .Ξ· j) ps) .centre elts : β j β γβ C U => F .Fβ j elts j = yo (F .Fβ j) (ps' j .whole) abstract elts-nat : β {x y} (f : D .Precategory.Hom x y) β F .Fβ f βnt elts x β‘ elts y elts-nat {x} {y} f = yo-natl $ is-sheafββis-separatedβ _ _ (F-sheaf y) Ξ» g hg β sym $ F.β y g (ps' y .whole) β‘β¨ ps' y .glues g hg β©β‘ Ο .Ξ· y .Ξ· _ (ps .part g hg) β‘β¨ Ο .is-natural x y f Ξ·β _ $β ps .part g hg β©β‘ F .Fβ f .Ξ· _ (Ο .Ξ· x .Ξ· _ (ps .part g hg)) β‘Λβ¨ ap (F .Fβ f .Ξ· _) (ps' x .glues g hg) β©β‘Λ F .Fβ f .Ξ· _ (F.β x g (ps' x .whole)) β‘β¨ F .Fβ f .is-natural _ _ _ $β _ β©β‘ F.β y g (F .Fβ f .Ξ· _ (ps' x .whole)) β sec : Section L ps sec .whole = unyo _ (lim.universal elts elts-nat) sec .glues {V} f hf = L βͺ f β« sec .whole β‘Λβ¨ lim.universal _ _ .is-natural _ _ _ $β _ β©β‘Λ lim.universal elts elts-nat .Ξ· V (id β f) β‘β¨ ap (lim.universal _ _ .Ξ· _) (Cat.id-comm-sym C) β©β‘ lim.universal elts elts-nat .Ξ· V (f β id) β‘β¨ unext it _ id β©β‘ L βͺ id β« (ps .part f hf) β‘β¨ L.F-id β©β‘ ps .part f hf β where it = lim.uniqueβ {x = γβ C V} _ (Ξ» f β Cat.pulll (PSh _ C) (elts-nat f)) (Ξ» j β Cat.pulll (PSh _ C) (lim.factors elts elts-nat)) (Ξ» j β yo-natl (sym (ps' j .glues f hf)) β sym (yo-natr refl))
is-sheaf-limit : β {o β o' β' βj} {C : Precategory o β} {J : Coverage C βj} {D : Precategory o' β'} {F : Functor D (PSh β C)} {L} {Ο} β is-limit F L Ο β ((d : β D β) β is-sheaf J (F # d)) β is-sheaf J L is-sheaf-limit lim dshf = from-is-sheafβ Ξ» c β is-sheafβ-limit _ _ _ lim _ Ξ» d β to-is-sheafβ (dshf d) _