module Cat.Instances.Shape.Terminal.Properties where
Properties🔗
We note that the terminal category is a unit to the categorical product.
⊤Cat-unit : ∀ {o h} {C : Precategory o h} → is-precat-iso {C = ⊤Cat ×ᶜ C} Cat⟨ !F , Id ⟩Cat ⊤Cat-unit .has-is-ff .is-eqv (tt , f) .centre = f , refl ⊤Cat-unit .has-is-iso .is-eqv (tt , a) .centre = a , refl ⊤Cat-unit .has-is-ff .is-eqv (tt , f) .paths (g , p) i = p (~ i) .snd , λ j → p (~ i ∨ j) ⊤Cat-unit .has-is-iso .is-eqv (tt , a) .paths (b , p) i = p (~ i) .snd , λ j → p (~ i ∨ j)
It is likewise isomorphic to its opposite.
⊤Cat-idemp : is-precat-iso {C = ⊤Cat ^op} {D = ⊤Cat} !F ⊤Cat-idemp .has-is-ff .is-eqv _ .centre = _ , refl ⊤Cat-idemp .has-is-iso .is-eqv _ .centre = _ , refl ⊤Cat-idemp .has-is-ff .is-eqv _ .paths (_ , _) = refl ⊤Cat-idemp .has-is-iso .is-eqv _ .paths (_ , _) = refl