module Cat.Instances.Shape.Terminal.Properties where

Properties🔗

We note that the terminal category is a unit to the categorical product.

⊤Cat-unit
  :  {o h} {C : Precategory o h}
   is-precat-iso {C = ⊤Cat ×ᶜ C} Cat⟨ !F , Id Cat
⊤Cat-unit .has-is-ff  .is-eqv (tt , f) .centre = f , refl
⊤Cat-unit .has-is-iso .is-eqv (tt , a) .centre = a , refl
⊤Cat-unit .has-is-ff  .is-eqv (tt , f) .paths (g , p) i =
  p (~ i) .snd , λ j  p (~ i  j)
⊤Cat-unit .has-is-iso .is-eqv (tt , a) .paths (b , p) i =
  p (~ i) .snd , λ j  p (~ i  j)

It is likewise isomorphic to its opposite.

⊤Cat-idemp : is-precat-iso {C = ⊤Cat ^op} {D = ⊤Cat} !F
⊤Cat-idemp  .has-is-ff  .is-eqv _ .centre = _ , refl
⊤Cat-idemp  .has-is-iso .is-eqv _ .centre = _ , refl
⊤Cat-idemp  .has-is-ff  .is-eqv _ .paths (_ , _) = refl
⊤Cat-idemp  .has-is-iso .is-eqv _ .paths (_ , _) = refl