module Cat.Instances.Shape.Terminal.Properties where
Properties🔗
We note that the terminal category is a unit to the categorical product.
⊤Cat-unit : ∀ {o h} {C : Precategory o h} → ⊤Cat ×ᶜ C ≡ C ⊤Cat-unit = sym $ Precategory-path Cat⟨ !F , Id ⟩Cat Cat⟨!F,Id⟩-is-iso where open is-precat-iso open is-iso Cat⟨!F,Id⟩-is-iso : is-precat-iso Cat⟨ !F , Id ⟩Cat Cat⟨!F,Id⟩-is-iso .has-is-ff .is-eqv (tt , f) .centre = f , refl Cat⟨!F,Id⟩-is-iso .has-is-iso .is-eqv (tt , a) .centre = a , refl Cat⟨!F,Id⟩-is-iso .has-is-ff .is-eqv (tt , f) .paths (g , p) i = p (~ i) .snd , λ j → p (~ i ∨ j) Cat⟨!F,Id⟩-is-iso .has-is-iso .is-eqv (tt , a) .paths (b , p) i = p (~ i) .snd , λ j → p (~ i ∨ j)