module Cat.Instances.Comma.Univalent {xo xβ yo yβ zo zβ} {X : Precategory xo xβ} {Y : Precategory yo yβ} {Z : Precategory zo zβ} (F : Functor Y X) (G : Functor Z X) (xuniv : is-category X) (yuniv : is-category Y) (zuniv : is-category Z) where
private module X = Cat.Reasoning X module Y = Cat.Reasoning Y module Z = Cat.Reasoning Z module F = Func F module G = Func G module FβG = Cat.Reasoning (F β G) open βObj open βHom
Comma categories preserve univalenceπ
Theorem. Let be a cospan of functors between three univalent categories. Then the comma category is also univalent.
It suffices to establish that, given an isomorphism in one gets an identification over which is the identity map. Since and are both univalent categories, we get (from the components of identifications and
Comma-is-category : is-category (F β G) Comma-is-category = record { to-path = objs ; to-path-over = maps } where module _ {ob ob'} (isom : FβG.Isomorphism ob ob') where module isom = FβG._β _ isom x-is-x : ob .x Y.β ob' .x y-is-y : ob .y Z.β ob' .y x-is-x = Y.make-iso (isom.to .Ξ±) (isom.from .Ξ±) (ap Ξ± isom.invl) (ap Ξ± isom.invr) y-is-y = Z.make-iso (isom.to .Ξ²) (isom.from .Ξ²) (ap Ξ² isom.invl) (ap Ξ² isom.invr)
Observe that, over
and
the map components
and
are equal (we say βequalβ rather than βidentifiedβ because Hom-sets are
sets). This follows by standard abstract nonsense: in particular,
functors between univalent categories respect isomorphisms in a strong
sense (F-map-path
).
This lets us reduce statements about and object-part action on paths to statements about their morphism parts on the components of the isomorphisms and But then we have
so over these isomorphisms the map parts become equal, thus establishing an identification
objs : ob β‘ ob' objs i .x = yuniv .to-path x-is-x i objs i .y = zuniv .to-path y-is-y i objs i .map = lemma' i where lemma' : PathP (Ξ» i β X.Hom (F.β (objs i .x)) (G.β (objs i .y))) (ob .map) (ob' .map) lemma' = transport (Ξ» i β PathP (Ξ» j β X.Hom (F-map-path F yuniv xuniv x-is-x (~ i) j) (F-map-path G zuniv xuniv y-is-y (~ i) j)) (ob .map) (ob' .map)) $ Univalent.Hom-pathp-iso xuniv $ X.pulll (sym (isom.to .sq)) β X.cancelr (F.annihilate (ap Ξ± isom.invl))
It still remains to show that, over this identification, the isomorphism is equal to the identity function. But this is simply a matter of pushing the identifications down to reach the βleafβ morphisms.
maps : PathP (Ξ» i β ob FβG.β objs i) _ isom maps = FβG.β -pathp _ _ (βHom-pathp _ _ (Univalent.Hom-pathp-reflr-iso yuniv (Y.idr _)) (Univalent.Hom-pathp-reflr-iso zuniv (Z.idr _)))