module Cat.Functor.Subcategory where
Subcategoriesπ
A subcategory is specified by a predicate on objects, and a predicate on morphisms between objects within that is closed under identities and composites.
To start, we package up all the data required to define a subcategory up into a record. Note that we omit the requirement that the predicate on objects is a proposition; this tends to be ill-behaved unless the is univalent.
record Subcat (o' β' : Level) : Type (o β β β lsuc o' β lsuc β') where no-eta-equality field is-ob : Ob β Type o' is-hom : β {x y} (f : Hom x y) β is-ob x β is-ob y β Type β' is-hom-prop : β {x y} (f : Hom x y) (px : is-ob x) (py : is-ob y) β is-prop (is-hom f px py) is-hom-id : β {x} β (px : is-ob x) β is-hom id px px is-hom-β : β {x y z} {f : Hom y z} {g : Hom x y} β {px : is-ob x} {py : is-ob y} {pz : is-ob z} β is-hom f py pz β is-hom g px py β is-hom (f β g) px pz
Morphisms of wide subcategories are defined as morphisms in where holds.
module _ {o o' β β'} {C : Precategory o β} (subcat : Subcat C o' β') where open Cat.Reasoning C open Subcat subcat record Subcat-hom (x y : Ξ£[ ob β Ob ] (is-ob ob)) : Type (β β β') where no-eta-equality constructor sub-hom field hom : Hom (x .fst) (y .fst) witness : subcat .is-hom hom (x .snd) (y .snd) open Subcat-hom
module _ {o β} {C : Precategory o β} where private module C = Precategory C instance Membership-subcat-ob : β {o' β'} β Membership C.Ob (Subcat C o' β') _ Membership-subcat-ob = record { _β_ = Ξ» o S β o β S .Subcat.is-ob } module _ {o o' β β'} {C : Precategory o β} {S : Subcat C o' β'} where open Cat.Reasoning C open Subcat S Subcat-hom-pathp : {x x' y y' : Ξ£[ ob β C ] (ob β S)} β {f : Subcat-hom S x y} {g : Subcat-hom S x' y'} β (p : x β‘ x') (q : y β‘ y') β PathP (Ξ» i β Hom (p i .fst) (q i .fst)) (f .hom) (g .hom) β PathP (Ξ» i β Subcat-hom S (p i) (q i)) f g Subcat-hom-pathp p q r i .hom = r i Subcat-hom-pathp {f = f} {g = g} p q r i .witness = is-propβpathp (Ξ» i β is-hom-prop (r i) (p i .snd) (q i .snd)) (f .witness) (g .witness) i instance Extensional-subcat-hom : β {βr x y} β¦ sa : Extensional (Hom (x .fst) (y .fst)) βr β¦ β Extensional (Subcat-hom S x y) βr Extensional-subcat-hom β¦ sa β¦ = injectionβextensional! (Subcat-hom-pathp refl refl) sa Funlike-Subcat-hom : β {β β'} {A : Type β} {B : A β Type β'} {x y} β β¦ _ : Funlike (Hom (x .fst) (y .fst)) A B β¦ β Funlike (Subcat-hom S x y) A B Funlike-Subcat-hom β¦ i β¦ = record { _#_ = Ξ» f x β apply (f .hom) x } H-Level-Subcat-hom : β {x y n} β H-Level (Subcat-hom S x y) (2 + n) H-Level-Subcat-hom = basic-instance 2 $ Isoβis-hlevel 2 eqv $ Ξ£-is-hlevel 2 (Hom-set _ _) Ξ» _ β is-hlevel-suc 1 (is-hom-prop _ _ _) where unquoteDecl eqv = declare-record-iso eqv (quote Subcat-hom)
We can then use this data to construct a category.
module _ {o o' β β'} {C : Precategory o β} (subcat : Subcat C o' β') where open Cat.Reasoning C open Subcat subcat
Subcategory : Precategory (o β o') (β β β') Subcategory .Precategory.Ob = β«β subcat Subcategory .Precategory.Hom = Subcat-hom subcat Subcategory .Precategory.Hom-set _ _ = hlevel 2 Subcategory .Precategory.id .hom = id Subcategory .Precategory.id .witness = is-hom-id _ Subcategory .Precategory._β_ f g .hom = f .hom β g .hom Subcategory .Precategory._β_ f g .witness = is-hom-β (f .witness) (g .witness) Subcategory .Precategory.idr f = ext (idr _) Subcategory .Precategory.idl f = ext (idl _) Subcategory .Precategory.assoc f g h = ext (assoc _ _ _)
From pseudomonic functorsπ
There is another way of representing subcategories: By giving a faithful functor
module _ {o o' β β'} {C : Precategory o β} {D : Precategory o' β'} {F : Functor C D} (faithful : is-faithful F) where open Functor F private module C = Cat.Reasoning C module D = Cat.Reasoning D
We construct a subcategory from a faithful functor by restricting to the objects in the essential image of and restricting the morphisms to those that lie in the image of
Faithful-subcat : Subcat D (o β β') (β β β') Faithful-subcat .Subcat.is-ob x = Essential-fibre F x Faithful-subcat .Subcat.is-hom f (y , y-es) (z , z-es) = Ξ£[ g β C.Hom y z ] (D.to z-es D.β Fβ g D.β D.from y-es β‘ f) Faithful-subcat .Subcat.is-hom-prop f (y , y-es) (z , z-es) (g , p) (h , q) = Ξ£-prop-path! $ faithful $ D.isoβepic (y-es D.Isoβ»ΒΉ) _ _ $ D.isoβmonic z-es _ _ $ p β sym q Faithful-subcat .Subcat.is-hom-id (y , y-es) = C.id , apβ D._β_ refl (D.eliml F-id) β D.invl y-es Faithful-subcat .Subcat.is-hom-β {f = f} {g = g} {x , x-es} {y , y-es} {z , z-es} (h , p) (i , q) = (h C.β i) , D.push-inner (F-β h i) Β·Β· D.insert-inner (D.invr y-es) Β·Β· apβ D._β_ (sym (D.assoc _ _ _) β p) q
There is an equivalence between canonical subcategory associated with and
Faithful-subcat-domain : Functor (Subcategory Faithful-subcat) C Faithful-subcat-domain .Functor.Fβ (x , x-es) = x-es .fst Faithful-subcat-domain .Functor.Fβ f = f .witness .fst Faithful-subcat-domain .Functor.F-id = refl Faithful-subcat-domain .Functor.F-β _ _ = refl Faithful-subcat-domain-is-ff : is-fully-faithful Faithful-subcat-domain Faithful-subcat-domain-is-ff {x = x , x' , x-es} {y = y , y' , y-es} = is-isoβis-equiv $ iso (Ξ» f β sub-hom (D.to y-es D.β Fβ f D.β D.from x-es) (f , refl)) (Ξ» _ β refl) (Ξ» f β ext (f .witness .snd)) Faithful-subcat-domain-is-split-eso : is-split-eso Faithful-subcat-domain Faithful-subcat-domain-is-split-eso x = (Fβ x , x , D.id-iso) , C.id-iso
There is a faithful functor from a subcategory on to
module _ {o o' β β'} {C : Precategory o β} {S : Subcat C o' β'} where open Cat.Reasoning C private module Sub = Cat.Reasoning (Subcategory S) open Subcat S
Forget-subcat : Functor (Subcategory S) C Forget-subcat .Functor.Fβ (x , _) = x Forget-subcat .Functor.Fβ f = f .hom Forget-subcat .Functor.F-id = refl Forget-subcat .Functor.F-β _ _ = refl is-faithful-Forget-subcat : is-faithful Forget-subcat is-faithful-Forget-subcat = ext
Furthermore, if the subcategory contains all of the isomorphisms of then the forgetful functor is pseudomonic.
is-pseudomonic-Forget-subcat : (β {x y} {f : Hom x y} {px : x β S} {py : y β S} β is-invertible f β S .is-hom f px py) β is-pseudomonic Forget-subcat is-pseudomonic-Forget-subcat invert .is-pseudomonic.faithful = is-faithful-Forget-subcat is-pseudomonic-Forget-subcat invert .is-pseudomonic.isos-full f = pure $ Sub.make-iso (sub-hom (f .to) (invert (isoβinvertible f))) (sub-hom (f .from) (invert (isoβinvertible (f Isoβ»ΒΉ)))) (ext (f .invl)) (ext (f .invr)) , trivial!
Univalent subcategoriesπ
Let be a univalent category. A subcategory of is univalent when the predicate on objects is a proposition.
subcat-isoβiso : β {x y : Ξ£[ x β Ob ] (x β S)} β x Sub.β y β x .fst β y .fst subcat-isoβiso f = make-iso (Sub.to f .hom) (Sub.from f .hom) (ap hom (Sub.invl f)) (ap hom (Sub.invr f)) subcat-is-category : is-category C β (β x β is-prop (x β S)) β is-category (Subcategory S) subcat-is-category cat ob-prop .to-path {a , pa} {b , pb} f = Ξ£-prop-path ob-prop (cat .to-path (subcat-isoβiso f)) subcat-is-category cat ob-prop .to-path-over p = Sub.β -pathp refl _ $ Subcat-hom-pathp refl _ $ apd (Ξ» _ β to) (cat .to-path-over (subcat-isoβiso p))