module Cat.Functor.Hom.Displayed {o β o' β'} {β¬ : Precategory o β} (β° : Displayed β¬ o' β') where
Displayed Hom functorsπ
Let be a displayed category over For every in the base, we can obtain a bifunctor from to where denotes the fibre category of at The action of on is given by just as in the non-displayed case.
Hom-over : β {x y} β Hom x y β Functor (Fibre β° x ^op ΓαΆ Fibre β° y) (Sets β') Hom-over u .Fβ (a , b) = el (Hom[ u ] a b) (Hom[ u ]-set a b) Hom-over u .Fβ (f , h) g = hom[ idl _ β idr _ ] (h β' g β' f) Hom-over u .F-id = funext Ξ» f β apr' {q = idl _} (idr' f) β idl[] Hom-over u .F-β (f , h) (f' , h') = funext Ξ» g β hom[] (hom[] (h β' h') β' g β' hom[] (f' β' f)) β‘β¨ disp! β° β©β‘ hom[] (h β' hom[] (h' β' g β' f') β' f) β
We can also define partially applied versions of this functor.
Hom-over-from : β {x y} β Hom x y β Ob[ x ] β Functor (Fibre β° y) (Sets β') Hom-over-from u x' .Fβ y' = el (Hom[ u ] x' y') (Hom[ u ]-set x' y') Hom-over-from u x' .Fβ f g = hom[ idl u ] (f β' g) Hom-over-from u x' .F-id = funext Ξ» f β idl[] Hom-over-from u x' .F-β f g = funext Ξ» h β smashl _ _ β sym assoc[] β sym (smashr _ _) Hom-over-into : β {x y} β Hom x y β Ob[ y ] β Functor (Fibre β° x ^op) (Sets β') Hom-over-into u y' .Fβ x' = el (Hom[ u ] x' y') (Hom[ u ]-set x' y') Hom-over-into u y' .Fβ f g = hom[ idr u ] (g β' f) Hom-over-into u y' .F-id = funext Ξ» f β idr[] Hom-over-into u y' .F-β f g = funext Ξ» h β smashr _ _ β assoc[] β (sym $ smashl _ _ )