module Cat.Functor.Closed where
When taken as a (bi)category,
the collection of (pre)categories is, in a suitably weak sense, Cartesian
closed: there is an equivalence between the functor categories
and
We do not define the full equivalence here, leaving the natural
isomorphisms aside and focusing on the inverse functors themselves:
Curry
and Uncurry
.
The two conversion functions act on objects essentially in the same way as currying and uncurrying behave on functions: the difference is that we must properly stage the action on morphisms. Currying a functor fixes a morphism and we must show that is natural in It follows from a bit of calculation using the functoriality of
Curry : Functor (C ×ᶜ D) E → Functor C Cat[ D , E ] Curry {C = C} {D = D} {E = E} F = curried where open import Cat.Functor.Bifunctor {C = C} {D = D} {E = E} F curried : Functor C Cat[ D , E ] curried .F₀ = Right curried .F₁ x→y = NT (λ f → first x→y) λ x y f → sym (F .F-∘ _ _) ·· ap (F .F₁) (Σ-pathp (C .idr _ ∙ sym (C .idl _)) (D .idl _ ∙ sym (D .idr _))) ·· F .F-∘ _ _ curried .F-id = ext λ x → F .F-id curried .F-∘ f g = ext λ x → ap (λ x → F .F₁ (_ , x)) (sym (D .idl _)) ∙ F .F-∘ _ _ Uncurry : Functor C Cat[ D , E ] → Functor (C ×ᶜ D) E Uncurry {C = C} {D = D} {E = E} F = uncurried where import Cat.Reasoning C as C import Cat.Reasoning D as D import Cat.Reasoning E as E module F = Functor F uncurried : Functor (C ×ᶜ D) E uncurried .F₀ (c , d) = F.₀ c .F₀ d uncurried .F₁ (f , g) = F.₁ f .η _ E.∘ F.₀ _ .F₁ g
The other direction must do slightly more calculation: Given a functor into functor-categories, and a pair of arguments, we must apply it twice: but at the level of morphisms, this involves composition in the codomain category, which throws a fair bit of complication into the functoriality constraints.
uncurried .F-id {x = x , y} = path where abstract path : E ._∘_ (F.₁ (C .id) .η y) (F.₀ x .F₁ (D .id)) ≡ E .id path = F.₁ C.id .η y E.∘ F.₀ x .F₁ D.id ≡⟨ E.elimr (F.₀ x .F-id) ⟩≡ F.₁ C.id .η y ≡⟨ (λ i → F.F-id i .η y) ⟩≡ E.id ∎ uncurried .F-∘ (f , g) (f' , g') = path where abstract path : uncurried .F₁ (f C.∘ f' , g D.∘ g') ≡ uncurried .F₁ (f , g) E.∘ uncurried .F₁ (f' , g') path = F.₁ (f C.∘ f') .η _ E.∘ F.₀ _ .F₁ (g D.∘ g') ≡˘⟨ E.pulll (λ i → F.F-∘ f f' (~ i) .η _) ⟩≡˘ F.₁ f .η _ E.∘ F.₁ f' .η _ E.∘ ⌜ F.₀ _ .F₁ (g D.∘ g') ⌝ ≡⟨ ap! (F.₀ _ .F-∘ _ _) ⟩≡ F.₁ f .η _ E.∘ F.₁ f' .η _ E.∘ F.₀ _ .F₁ g E.∘ F.₀ _ .F₁ g' ≡⟨ cat! E ⟩≡ F.₁ f .η _ E.∘ ⌜ F.₁ f' .η _ E.∘ F.₀ _ .F₁ g ⌝ E.∘ F.₀ _ .F₁ g' ≡⟨ ap! (F.₁ f' .is-natural _ _ _) ⟩≡ F.₁ f .η _ E.∘ (F.₀ _ .F₁ g E.∘ F.₁ f' .η _) E.∘ F.₀ _ .F₁ g' ≡⟨ cat! E ⟩≡ ((F.₁ f .η _ E.∘ F.₀ _ .F₁ g) E.∘ (F.₁ f' .η _ E.∘ F.₀ _ .F₁ g')) ∎