module Cat.Displayed.Comprehension.Coproduct.VeryStrong where
Very strong comprehension coproducts🔗
As noted in strong comprehension coproducts, the elimination principle for comprehension coproducts is quite weak, being more of a recursion principle. Strong coproducts model coproducts with a proper elimination, but as also noted there, we’re lacking large elimination. If we want that, we have to find very strong comprehension coproducts.
Let and be comprehension categories over We say that has very strong coproducts if the canonical substitution
is an isomorphism.
module _ {ob ℓb od ℓd oe ℓe} {B : Precategory ob ℓb} {D : Displayed B od ℓd} {E : Displayed B oe ℓe} {D-fib : Cartesian-fibration D} {E-fib : Cartesian-fibration E} (P : Comprehension D) {Q : Comprehension E} (coprods : has-comprehension-coproducts D-fib E-fib Q) where private open Cat.Reasoning B module E = Displayed E module D = Displayed D module P = Comprehension D D-fib P module Q = Comprehension E E-fib Q open has-comprehension-coproducts coprods
very-strong-comprehension-coproducts : Type _ very-strong-comprehension-coproducts = ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → is-invertible (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩)
module very-strong-comprehension-coproducts {ob ℓb od ℓd oe ℓe} {B : Precategory ob ℓb} {D : Displayed B od ℓd} {E : Displayed B oe ℓe} {D-fib : Cartesian-fibration D} {E-fib : Cartesian-fibration E} (P : Comprehension D) {Q : Comprehension E} (coprods : has-comprehension-coproducts D-fib E-fib Q) (vstrong : very-strong-comprehension-coproducts P coprods) where private open Cat.Reasoning B module E = Displayed E module D = Displayed D module P = Comprehension D D-fib P module Q = Comprehension E E-fib Q open has-comprehension-coproducts coprods module vstrong {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) = is-invertible (vstrong x a)
This gives us the familiar first and second projections out of the coproduct.
opaque ∐-fst : ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → Hom (Γ P.⨾ ∐ x a) (Γ Q.⨾ x) ∐-fst x a = P.πᶜ ∘ vstrong.inv x a opaque ∐-snd : ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → Hom (Γ P.⨾ ∐ x a) (Γ Q.⨾ x P.⨾ a) ∐-snd x a = vstrong.inv x a
These come with their respective rules, but they are slightly obfuscated due to having to work with substitutions rather than terms.
opaque unfolding ∐-fst ∐-fst-β : ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → ∐-fst x a ∘ (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ≡ P.πᶜ ∐-fst-β x a = cancelr (vstrong.invr x a) opaque unfolding ∐-snd ∐-snd-β : ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → ∐-snd x a ∘ (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ≡ id ∐-snd-β x a = vstrong.invr x a
We also have an law, though this too is still a bit obfuscated.
opaque unfolding ∐-fst ∐-snd ∐-very-strong-η : ∀ {Γ} (x : E.Ob[ Γ ]) (a : D.Ob[ Γ Q.⨾ x ]) → (Q.πᶜ P.⨾ˢ ⟨ x , a ⟩) ∘ ∐-snd x a ≡ id ∐-very-strong-η x a = vstrong.invl x a
Note that very strong coproducts are always strong.
strong : strong-comprehension-coproducts P coprods strong = to-strong-comprehension-coproducts P coprods mkstrong where open make-strong-comprehension-coproducts mkstrong : make-strong-comprehension-coproducts P coprods mkstrong .∐-strong-elim σ ν p = ν ∘ ∐-snd _ _ mkstrong .∐-strong-β p = cancelr (∐-snd-β _ _) mkstrong .∐-strong-sub p = pulll (sym p) ∙ cancelr (∐-very-strong-η _ _) mkstrong .∐-strong-η p other β η = intror (∐-very-strong-η _ _) ∙ pulll β
Strong coproducts over the same category are very strong🔗
Let be a comprehension category over having comprehension coproducts over itself. If these coproducts are strong, then they are automatically very strong. That should make sense: we have have been motivating strong comprehension coproducts as having elimination but no large elimination, but if we only have one “size” going around, then elimination is large elimination!
module _ {ob ℓb oe ℓe} {B : Precategory ob ℓb} {E : Displayed B oe ℓe} {E-fib : Cartesian-fibration E} {P : Comprehension E} (coprods : has-comprehension-coproducts E-fib E-fib P) where
private open Cat.Reasoning B module E where open Displayed E public open Cartesian-fibration E E-fib public module E* {Γ Δ : Ob} (σ : Hom Γ Δ) = Functor (base-change E E-fib σ) open Comprehension E E-fib P open has-comprehension-coproducts coprods
self-strong-comprehension-coproducts→very-strong : strong-comprehension-coproducts P coprods → very-strong-comprehension-coproducts P coprods
We begin by defining a first projection by factorizing the following square. This really is special: in the case of strong comprehension coproducts, and correspond to different context extensions (analogy: the first extends the context by a kind, the second by a type). But since we’re dealing with very strong coproducts, they’re the same extension.
We can then define the second projection using the first.
The and laws follow from some short calculations.
self-strong-comprehension-coproducts→very-strong strong {Γ = Γ} x a = make-invertible ∐-strong-snd ∐-strong-snd-η (∐-strong-β ∐-strong-fst-β) where open strong-comprehension-coproducts P coprods strong ∐-strong-fst : Hom (Γ ⨾ ∐ x a) (Γ ⨾ x) ∐-strong-fst = ∐-strong-elim πᶜ πᶜ (sub-proj ⟨ x , a ⟩) ∐-strong-fst-β : ∐-strong-fst ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ≡ πᶜ ∘ id ∐-strong-fst-β = ∐-strong-β _ ∙ sym (idr _) ∐-strong-snd : Hom (Γ ⨾ ∐ x a) (Γ ⨾ x ⨾ a) ∐-strong-snd = ∐-strong-elim ∐-strong-fst id ∐-strong-fst-β ∐-strong-snd-forget : πᶜ ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡ πᶜ ∐-strong-snd-forget = πᶜ ∘ (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡⟨ pulll (sub-proj ⟨ x , a ⟩) ⟩≡ (πᶜ ∘ πᶜ) ∘ ∐-strong-snd ≡⟨ pullr (∐-strong-sub ∐-strong-fst-β) ⟩≡ (πᶜ ∘ ∐-strong-fst) ≡⟨ ∐-strong-sub (sub-proj ⟨ x , a ⟩) ⟩≡ πᶜ ∎ ∐-strong-snd-η : (πᶜ ⨾ˢ ⟨ x , a ⟩) ∘ ∐-strong-snd ≡ id ∐-strong-snd-η = ∐-strong-η refl _ (cancelr (∐-strong-β ∐-strong-fst-β)) ∐-strong-snd-forget ∙ ∐-strong-id