module Cat.Bi.Instances.Spans {o ℓ} (C : Precategory o ℓ) where
The bicategory of spans🔗
Let be a precategory. By a span in (from an object to an object we mean a diagram of the form Note that the “vertex” of this span, the object is part of the data, so that the collection of “spans in ” will not be a set (unless is strict) — so we can not construct a category where is the collection of spans from to
However, we can make spans in the objects of a category, and the hom-sets are the maps in between the vertices which “commute with the legs”. Diagrammatically, a map between spans is the dashed line in
where both the left and right triangles must commute.
record Span (a b : Ob) : Type (o ⊔ ℓ) where constructor span field apex : Ob left : Hom apex a right : Hom apex b open Span record Span-hom {a b : Ob} (x y : Span a b) : Type ℓ where no-eta-equality field map : Hom (x .apex) (y .apex) left : x .left ≡ y .left ∘ map right : x .right ≡ y .right ∘ map
open Span-hom unquoteDecl H-Level-Span-hom = declare-record-hlevel 2 H-Level-Span-hom (quote Span-hom) instance Underlying-Span : ∀ {a b} ⦃ _ : Underlying Ob ⦄ → Underlying (Span a b) Underlying-Span = record { ⌞_⌟ = λ S → ⌞ S .apex ⌟ } Span-hom-path : {a b : Ob} {x y : Span a b} {f g : Span-hom x y} → f .map ≡ g .map → f ≡ g Span-hom-path p i .map = p i Span-hom-path {x = x} {y} {f} {g} p i .left j = is-set→squarep (λ i j → Hom-set _ _) (λ _ → x .left) (λ j → f .left j) (λ j → g .left j) (λ j → y .left ∘ p j) i j Span-hom-path {x = x} {y} {f} {g} p i .right j = is-set→squarep (λ i j → Hom-set _ _) (λ _ → x .right) (λ j → f .right j) (λ j → g .right j) (λ j → y .right ∘ p j) i j
The category of spans between and admits a faithful functor to (projecting the vertex and the “middle map”, respectively), so that equality of maps of spans can be compared at the level of maps in
Spans : Ob → Ob → Precategory _ _ Spans x y .Precategory.Ob = Span x y Spans x y .Precategory.Hom = Span-hom Spans x y .Precategory.Hom-set _ _ = hlevel 2 Spans x y .Precategory.id .map = id Spans x y .Precategory.id .left = intror refl Spans x y .Precategory.id .right = intror refl Spans x y .Precategory._∘_ f g .map = f .map ∘ g .map Spans x y .Precategory._∘_ f g .left = g .left ∙ pushl (f .left) Spans x y .Precategory._∘_ f g .right = g .right ∙ pushl (f .right) Spans x y .Precategory.idr f = Span-hom-path (idr _) Spans x y .Precategory.idl f = Span-hom-path (idl _) Spans x y .Precategory.assoc f g h = Span-hom-path (assoc _ _ _)
Now suppose that admits pullbacks for arbitrary pairs of maps. Supposing that we have some spans and we can fit them in an M-shaped diagram like
so that taking the pullback of the diagram
gives us an universal solution to the problem of finding a span
Since pullbacks are universal, this composition operation is
functorial, and so extends to a composition operation Span-∘
:
module _ (pb : ∀ {a b c} (f : Hom a b) (g : Hom c b) → Pullback C f g) where open Functor Span-∘ : ∀ {a b c} → Functor (Spans b c ×ᶜ Spans a b) (Spans a c) Span-∘ .F₀ (sp1 , sp2) = span pb.apex (sp2 .left ∘ pb.p₂) (sp1 .right ∘ pb.p₁) where module pb = Pullback (pb (sp1 .left) (sp2 .right)) Span-∘ .F₁ {x1 , x2} {y1 , y2} (f , g) = res where module x = Pullback (pb (x1 .left) (x2 .right)) module y = Pullback (pb (y1 .left) (y2 .right)) x→y : Hom x.apex y.apex x→y = y.universal {p₁' = f .map ∘ x.p₁} {p₂' = g .map ∘ x.p₂} comm where abstract open Pullback comm : y1 .left ∘ f .map ∘ x.p₁ ≡ y2 .right ∘ g .map ∘ x.p₂ comm = pulll (sym (f .left)) ∙ x.square ∙ pushl (g .right) res : Span-hom _ _ res .map = x→y res .left = sym (pullr y.p₂∘universal ∙ pulll (sym (g .left))) res .right = sym (pullr y.p₁∘universal ∙ pulll (sym (f .right))) Span-∘ .F-id {x1 , x2} = Span-hom-path $ sym $ x.unique id-comm id-comm where module x = Pullback (pb (x1 .left) (x2 .right)) Span-∘ .F-∘ {x1 , x2} {y1 , y2} {z1 , z2} f g = Span-hom-path $ sym $ z.unique (pulll z.p₁∘universal ∙ pullr y.p₁∘universal ∙ assoc _ _ _) (pulll z.p₂∘universal ∙ pullr y.p₂∘universal ∙ assoc _ _ _) where module x = Pullback (pb (x1 .left) (x2 .right)) module y = Pullback (pb (y1 .left) (y2 .right)) module z = Pullback (pb (z1 .left) (z2 .right))
What we’ll show in the rest of this module is that Span-∘
lets us make Spans
into the categories of
1-cells of a prebicategory, the (pre)bicategory of
spans (of
As mentioned before, this prebicategory has (a priori) no upper bound on
the h-levels of its 1-cells, so it is not locally strict. We remark that
when
is univalent, then
is locally so, and when
is gaunt, then
is strict.
Since the details of the full construction are grueling, we will present only an overview of the unitors and the associator. For the left unitor, observe that the composition is implemented by a pullback diagram like
but observe that the maps and also form a cone over the cospan so that there is a unique map filling the dashed line in the diagram above such that everything commutes: hence there is an invertible 2-cell The right unitor is analogous.
open Prebicategory open Pullback private _¤_ : ∀ {a b c} (x : Span b c) (y : Span a b) → Span a c f ¤ g = Span-∘ .F₀ (f , g) sλ← : ∀ {A B} (x : Span A B) → Span-hom x (span _ C.id C.id ¤ x) sλ← x .map = pb _ _ .universal id-comm-sym sλ← x .left = sym $ pullr (pb _ _ .p₂∘universal) ∙ idr _ sλ← x .right = sym $ pullr (pb _ _ .p₁∘universal) ∙ idl _ sρ← : ∀ {A B} (x : Span A B) → Span-hom x (x ¤ span _ C.id C.id) sρ← x .map = pb _ _ .universal id-comm sρ← x .left = sym $ pullr (pb _ _ .p₂∘universal) ∙ idl _ sρ← x .right = sym $ pullr (pb _ _ .p₁∘universal) ∙ idr _
For the associator, while doing the construction in elementary terms is quite complicated, we observe that, diagrammatically, the composite of three morphisms fits into a diagram like
so that, at a high level, there is no confusion as to which composite is meant. From then, it’s just a matter of proving pullbacks are associative (in a standard, but annoying, way), and showing that these canonically-obtained isomorphisms (are natural in all the possible variables and) satisfy the triangle and pentagon identities.
On second thought, let’s not read that. T’is a silly theorem.
sα← : ∀ {A B C D} ((f , g , h) : Span C D × Span B C × Span A B) → Span-hom ((f ¤ g) ¤ h) (f ¤ (g ¤ h)) sα← (f , g , h) .map = pb _ _ .universal resp' where abstract resp : g .left C.∘ pb (f .left) (g .right) .p₂ C.∘ pb ((f ¤ g) .left) (h .right) .p₁ ≡ h .right C.∘ pb ((f ¤ g) .left) (h .right) .p₂ resp = assoc _ _ _ ∙ pb _ _ .square shuffle = pb _ _ .universal {p₁' = pb _ _ .p₂ C.∘ pb _ _ .p₁} {p₂' = pb _ _ .p₂} resp abstract resp' : f .left C.∘ pb (f .left) (g .right) .p₁ C.∘ pb ((f ¤ g) .left) (h .right) .p₁ ≡ (g ¤ h) .right C.∘ shuffle resp' = sym $ pullr (pb _ _ .p₁∘universal) ∙ extendl (sym (pb _ _ .square)) sα← (f , g , h) .left = sym $ pullr (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) sα← (f , g , h) .right = sym $ pullr (pb _ _ .p₁∘universal) ∙ assoc _ _ _ sα→ : ∀ {A B C D} ((f , g , h) : Span C D × Span B C × Span A B) → Span-hom (f ¤ (g ¤ h)) ((f ¤ g) ¤ h) sα→ (f , g , h) .map = pb _ _ .universal resp' where abstract resp : f .left C.∘ pb (f .left) ((g ¤ h) .right) .p₁ ≡ g .right C.∘ pb (g .left) (h .right) .p₁ C.∘ pb (f .left) ((g ¤ h) .right) .p₂ resp = pb _ _ .square ∙ sym (assoc _ _ _) shuffle = pb _ _ .universal {p₁' = pb _ _ .p₁} {p₂' = pb _ _ .p₁ C.∘ pb _ _ .p₂} resp abstract resp' : (f ¤ g) .left C.∘ shuffle ≡ h .right C.∘ pb (g .left) (h .right) .p₂ C.∘ pb (f .left) ((g ¤ h) .right) .p₂ resp' = pullr (pb _ _ .p₂∘universal) ∙ extendl (pb _ _ .square) sα→ (f , g , h) .left = sym $ pullr (pb _ _ .p₂∘universal) ∙ assoc _ _ _ sα→ (f , g , h) .right = sym $ pullr (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) open make-natural-iso {-# TERMINATING #-} Spanᵇ : Prebicategory _ _ _ Spanᵇ .Ob = C.Ob Spanᵇ .Hom = Spans Spanᵇ .id = span _ C.id C.id Spanᵇ .compose = Span-∘ Spanᵇ .unitor-l = to-natural-iso ni where ni : make-natural-iso (Id {C = Spans _ _}) _ ni .eta = sλ← ni .inv x .map = pb _ _ .p₂ ni .inv x .left = refl ni .inv x .right = pb _ _ .square ni .eta∘inv x = Span-hom-path (Pullback.unique₂ (pb _ _) {p = idl _ ∙ ap₂ C._∘_ refl (introl refl)} (pulll (pb _ _ .p₁∘universal)) (pulll (pb _ _ .p₂∘universal)) (id-comm ∙ pb _ _ .square) id-comm) ni .inv∘eta x = Span-hom-path (pb _ _ .p₂∘universal) ni .natural x y f = Span-hom-path $ Pullback.unique₂ (pb _ _) {p = idl _ ∙ f .right} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ idl _) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) ∙ idr _) (pulll (pb _ _ .p₁∘universal) ∙ sym (f .right)) (pulll (pb _ _ .p₂∘universal) ∙ idl _) Spanᵇ .unitor-r = to-natural-iso ni where ni : make-natural-iso (Id {C = Spans _ _}) _ ni .eta = sρ← ni .inv _ .map = pb _ _ .p₁ ni .inv _ .left = sym (pb _ _ .square) ni .inv _ .right = refl ni .eta∘inv x = Span-hom-path (Pullback.unique₂ (pb _ _) {p = introl refl} (pulll (pb _ _ .p₁∘universal) ∙ idl _) (pulll (pb _ _ .p₂∘universal)) (idr _) (id-comm ∙ sym (pb _ _ .square))) ni .inv∘eta x = Span-hom-path (pb _ _ .p₁∘universal) ni .natural x y f = Span-hom-path $ Pullback.unique₂ (pb _ _) {p = sym (f .left) ∙ introl refl} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ idr _) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) ∙ idl _) (pulll (pb _ _ .p₁∘universal) ∙ idl _) (pulll (pb _ _ .p₂∘universal) ∙ sym (f .left)) Spanᵇ .associator = to-natural-iso ni where ni : make-natural-iso _ _ ni .eta = sα← ni .inv = sα→ ni .eta∘inv x = Span-hom-path $ Pullback.unique₂ (pb _ _) {p = pb _ _ .square} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ pb _ _ .p₁∘universal) (pulll (pb _ _ .p₂∘universal) ∙ unique₂ (pb _ _) {p = extendl (pb _ _ .square)} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ pb _ _ .p₂∘universal) (pulll (pb _ _ .p₂∘universal) ∙ pb _ _ .p₂∘universal) refl refl) (idr _) (idr _) ni .inv∘eta x = Span-hom-path $ Pullback.unique₂ (pb _ _) {p = pb _ _ .square} (pulll (pb _ _ .p₁∘universal) ∙ unique₂ (pb _ _) {p = extendl (pb _ _ .square)} (pulll (pb _ _ .p₁∘universal) ∙ pb _ _ .p₁∘universal) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) ∙ pb _ _ .p₁∘universal) refl refl) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) ∙ pb _ _ .p₂∘universal) (idr _) (idr _) ni .natural x y f = Span-hom-path $ Pullback.unique₂ (pb _ _) {p₁' = f .fst .map C.∘ pb _ _ .p₁ C.∘ pb _ _ .p₁} {p₂' = pb _ _ .universal {p₁' = f .snd .fst .map C.∘ pb _ _ .p₂ C.∘ pb _ _ .p₁} {p₂' = f .snd .snd .map C.∘ pb _ _ .p₂} (pulll (sym (f .snd .fst .left)) ∙ assoc _ _ _ ∙ pb _ _ .square ∙ pushl (f .snd .snd .right))} {p = sym $ pullr (pb _ _ .p₁∘universal) ∙ pulll (sym (f .snd .fst .right)) ∙ extendl (sym (pb _ _ .square)) ∙ pushl (f .fst .left)} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal)) (pulll (pb _ _ .p₂∘universal) ∙ pb _ _ .unique (pulll (extendl (pb _ _ .p₁∘universal)) ∙ pullr (pullr (pb _ _ .p₂∘universal)) ∙ ap₂ C._∘_ refl (pb _ _ .p₁∘universal)) (pulll (extendl (pb _ _ .p₂∘universal)) ∙ pullr (pullr (pb _ _ .p₂∘universal)) ∙ ap₂ C._∘_ refl (pb _ _ .p₂∘universal))) (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ pulll (pb _ _ .p₁∘universal) ∙ sym (assoc _ _ _)) (pulll (pb _ _ .p₂∘universal) ∙ pb _ _ .unique (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ extendl (pb _ _ .p₂∘universal)) (pulll (pb _ _ .p₂∘universal) ∙ pb _ _ .p₂∘universal)) Spanᵇ .triangle f g = Span-hom-path $ pb _ _ .unique (pulll (pb _ _ .p₁∘universal) ∙ pullr (pb _ _ .p₁∘universal) ∙ pb _ _ .p₁∘universal ∙ introl refl) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal) ∙ eliml refl) Spanᵇ .pentagon f g h i = Span-hom-path $ Pullback.unique₂ (pb _ _) {p = pullr (pulll (pb _ _ .p₂∘universal) ∙ pullr (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal)) ∙ ap₂ C._∘_ refl (pulll (pb _ _ .p₁∘universal))) ∙ ap₂ C._∘_ refl (extendl (pb _ _ .p₂∘universal)) ∙ sym (ap₂ C._∘_ refl (idl _ ∙ extendl (pb _ _ .p₂∘universal)) ∙ extendl (sym (pb _ _ .square)))} (pulll (pb _ _ .p₁∘universal) ∙ pullr (pulll (pb _ _ .p₁∘universal))) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal))) (pulll (pb _ _ .p₁∘universal) ∙ Pullback.unique₂ (pb _ _) {p = pullr (pb _ _ .p₂∘universal) ∙ extendl (pb _ _ .square) ∙ sym (assoc _ _ _)} (pulll (pb _ _ .p₁∘universal) ∙ pb _ _ .p₁∘universal) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal)) (pulll (pb _ _ .p₁∘universal) ∙ pb _ _ .unique (pulll (pb _ _ .p₁∘universal) ∙ pulll (pb _ _ .p₁∘universal) ∙ pb _ _ .p₁∘universal ∙ idl _) (pulll (pb _ _ .p₂∘universal) ∙ pulll (pullr (pb _ _ .p₂∘universal)) ∙ pullr (pullr (pb _ _ .p₂∘universal) ∙ pulll (pb _ _ .p₁∘universal)) ∙ pulll (pb _ _ .p₁∘universal))) (pulll (pb _ _ .p₂∘universal) ∙ pullr (pulll (pb _ _ .p₂∘universal) ∙ pullr (pb _ _ .p₂∘universal)) ∙ ap₂ C._∘_ refl (pulll (pb _ _ .p₁∘universal)) ∙ pulll (pb _ _ .p₂∘universal) ∙ sym (assoc _ _ _))) ( pulll (pb _ _ .p₂∘universal) ·· pullr (pb _ _ .p₂∘universal) ·· sym (idl _ ·· pulll (pb _ _ .p₂∘universal) ·· sym (assoc _ _ _)))