module Algebra.Ring.Module.Multilinear {ℓ} (R : Ring ℓ) (cr : is-commutative-ring R) where
Multilinear maps🔗
private module R = Ring-on (R .snd) open Additive-notation ⦃ ... ⦄ open Module-notation ⦃ ... ⦄ -- XXX: Level subsumption checking _hates_ what I'm doing here with -- ℓ-maxᶠ, since it doesn't satisfy any definitional equalities like -- (ℓ-maxᶠ (λ x → f x ⊔ y)) = ℓ-maxᶠ f ⊔ y. The level we pick has to -- satisfy: -- -- ℓ-maxᶠ (λ z → ℓ ⊔ ℓₘ z ⊔ ℓₙ ⊔ ℓ-maxᶠ ℓₘ) ≤ _ -- -- floating out the constants, this is -- ℓ ⊔ ℓₙ ⊔ ℓ-maxᶠ (λ z → ℓₘ n ⊔ ℓ-maxᶠ ℓₘ) -- and the last term simplifies to ℓ-maxᶠ ℓₘ by reasoning in a -- lattice. -- {-# NO_UNIVERSE_CHECK #-}
We define the module of multilinear maps over a base commutative ring generically over all finite arities. A multilinear map in variables is a function which is separately linear in each variable. We formalise this construction very literally, using finitary dependent products and curried functions.
record Multilinear-map (n : Nat) {ℓₘ : Fin n → Level} {ℓₙ} (Ms : (i : Fin n) → Module R (ℓₘ i)) (N : Module R ℓₙ) : Type (ℓ ⊔ ℓₙ ⊔ ℓ-maxᶠ ℓₘ) where no-eta-equality private instance _ = module-notation N _ : ∀ {i : Fin n} → Module-notation R ⌞ Ms i ⌟ _ = module-notation (Ms _)
field map : Arrᶠ (λ i → ⌞ Ms i ⌟) ⌞ N ⌟
We use the combinators for reasoning about finitary curried functions to express the linearity requirement as follows. For simplicity, assume we are given a tuple and an index The value of does not matter, but having an irredundant representation would be much harder.
If we are given we can consider the updated tuples1 and — which take the same values as on all but the index, where they have the specified value. This corresponds to holding all but the index constant, and allowing only it to vary. Linearity on the value saying that
linearₚ : Πᶠ λ i → (α : Πᶠ λ j → ⌞ Ms j ⌟) (r : ⌞ R ⌟) (x y : ⌞ Ms i ⌟) → applyᶠ map (updateₚ α i (r ⋆ x + y)) ≡ r ⋆ applyᶠ map (updateₚ α i x) + applyᶠ map (updateₚ α i y)
linear-at : ∀ i (xs : Πᶠ λ j → ⌞ Ms j ⌟) (r : ⌞ R ⌟) (x y : ⌞ Ms i ⌟) → applyᶠ map (updateₚ xs i (r ⋆ x + y)) ≡ r ⋆ applyᶠ map (updateₚ xs i x) + applyᶠ map (updateₚ xs i y) linear-at = indexₚ linearₚ pres-+-at : ∀ i (xs : Πᶠ λ j → ⌞ Ms j ⌟) (x y : ⌞ Ms i ⌟) → applyᶠ map (updateₚ xs i (x + y)) ≡ applyᶠ map (updateₚ xs i x) + applyᶠ map (updateₚ xs i y) pres-+-at i xs x y = ap (λ e → applyᶠ map (updateₚ xs i (e + y))) (sym (⋆-id _)) ·· linear-at i xs R.1r x y ·· ap₂ _+_ (⋆-id _) refl is-group-hom-at : ∀ i (xs : Πᶠ λ j → ⌞ Ms j ⌟) → is-group-hom (Module-on→Group-on (Ms i .snd)) (Module-on→Group-on (N .snd)) λ m → applyᶠ map (updateₚ xs i m) is-group-hom-at i xs .is-group-hom.pres-⋆ x y = pres-+-at i xs x y pres-⋆-at : ∀ i (xs : Πᶠ λ j → ⌞ Ms j ⌟) (r : ⌞ R ⌟) (x : ⌞ Ms i ⌟) → applyᶠ map (updateₚ xs i (r ⋆ x)) ≡ r ⋆ applyᶠ map (updateₚ xs i x) pres-⋆-at i xs r x = ap (λ e → applyᶠ map (updateₚ xs i e)) (sym +-idr) ·· linear-at i xs r x 0g ·· (ap₂ _+_ refl (is-group-hom.pres-id (is-group-hom-at i xs)) ∙ +-idr) -- XXX: Since we're already squishing down a type whose universe level -- Agda dislikes, one might wonder if we have to use the finitary -- products in the type of `pres-+ₚ`. The answer is yes, since -- otherwise `linearᶠ` lives in Setω, which the declare-record-iso -- tactic is very unhappy about. open Multilinear-map open Multilinear-map using (map) public open Linear-map using (map) private unquoteDecl eqv = declare-record-iso eqv (quote Multilinear-map) private variable ℓm ℓn : Level M N : Module R ℓm n : Nat ℓₘ : Fin n → Level Ms : ∀ i → Module R (ℓₘ i) Multilinear-map-path : ∀ {n} {ℓₘ : Fin n → Level} {N : Module R ℓn} {Ms : (i : Fin n) → Module R (ℓₘ i)} {f g : Multilinear-map n Ms N} → f .map ≡ g .map → f ≡ g Multilinear-map-path {N = N} {f = f} {g = g} p = go where module N = Module-on (N .snd) go : f ≡ g go i .map = p i go i .linearₚ = is-prop→pathp (λ i → Πᶠ-is-hlevel 1 λ j → Π-is-hlevel³ 1 λ _ _ _ → Π-is-hlevel 1 λ _ → N .fst .is-tr (applyᶠ (p i) _) (_ N.⋆ applyᶠ (p i) _ N.+ applyᶠ (p i) _)) (f .linearₚ) (g .linearₚ) i Multilinear-maps : ∀ {n} {ℓₘ : Fin n → Level} {Ms : (i : Fin n) → Module R (ℓₘ i)} {N : Module R ℓn} → Module-on R (Multilinear-map n Ms N) Multilinear-maps {n = n} {Ms = Ms} {N = N} = to-module-on mk where private module Ms i = Module-on (Ms i .snd) module N = Module-on (N .snd) instance _ = module-notation N _ : ∀ {i : Fin n} → Module-notation R ⌞ Ms i ⌟ _ = module-notation (Ms _) -- Normally there would be no way in hell these helpers would ever -- be useful... except this module needs lossy-unification for -- performance reasonsl so we might as well abuse it for style! _⟨_⟩ : Multilinear-map n Ms N → {_ : Πᶠ (λ i → ⌞ Ms i ⌟)} {i : Fin n} → ⌞ Ms i ⌟ → ⌞ N ⌟ _⟨_⟩ f {xs} {i} x = applyᶠ (f .map) (updateₚ xs i x) _⟨_⟩ᵤ : ∀ {n ℓ'} {ℓ : Fin n → Level} {P : (i : Fin n) → Type (ℓ i)} {X : Type ℓ'} → Arrᶠ P X → {_ : Πᶠ P} {i : Fin n} → P i → X _⟨_⟩ᵤ f {xs} {i} x = applyᶠ f (updateₚ xs i x) infix 300 _⟨_⟩ infix 300 _⟨_⟩ᵤ
Note that, since some of the computations involving curried functions of generic length can get pretty gnarly, we separate preservation of addition and of scaling when defining multilinear maps. This makes no semantic difference, but it does simplify the proofs slightly.
We now turn to defining an
structure on the set of multilinear maps
This is nothing but the pointwise module structure, exactly as in the
construction of internal
homs in
;
However, to keep the interface of Multilinear-map
simple to use, we
must submit to the conservation of frustration, and power through some
nighmarish computations by hand.
add : Multilinear-map n Ms N → Multilinear-map n Ms N → Multilinear-map n Ms N add f g .Multilinear-map.map = zipᶠ _+_ (f .map) (g .map) add f g .Multilinear-map.linearₚ = tabulateₚ λ i xs r x y → zipᶠ _+_ (f .map) (g .map) ⟨ r ⋆ x + y ⟩ᵤ ≡⟨ apply-zipᶠ _ _ _ _ ⟩≡ f ⟨ r ⋆ x + y ⟩ + g ⟨ r ⋆ x + y ⟩ ≡⟨ ap₂ _+_ (linear-at f i xs r x y) (linear-at g i xs r x y) ⟩≡ (r ⋆ f ⟨ x ⟩ + f ⟨ y ⟩) + (r ⋆ g ⟨ x ⟩ + g ⟨ y ⟩) ≡⟨ N.ab.extendr (N.ab.extendl N.+-comm) ⟩≡ (r ⋆ f ⟨ x ⟩ + r ⋆ g ⟨ x ⟩) + (f ⟨ y ⟩ + g ⟨ y ⟩) ≡⟨ ap₂ _+_ (sym (⋆-distribl r _ _)) refl ⟩≡ r ⋆ (f ⟨ x ⟩ + g ⟨ x ⟩) + (f ⟨ y ⟩ + g ⟨ y ⟩) ≡⟨ ap₂ N._+_ (ap (r N.⋆_) (sym (apply-zipᶠ _ _ _ _))) (sym (apply-zipᶠ _ _ _ _)) ⟩≡ r ⋆ (zipᶠ _+_ (f .map) (g .map) ⟨ x ⟩ᵤ) + zipᶠ _+_ (f .map) (g .map) ⟨ y ⟩ᵤ ∎
The example of addition, above, is representative: The flow of these proofs is explicit appeals to the computation rule(s) of curried functions, since the length is generic, surrounding a bit of actual algebra when the underlying operations are exposed enough. The rest of the construction is entirely analogous.
Since it’s so repetitive, it does not need time in the spotlight.
invm : Multilinear-map n Ms N → Multilinear-map n Ms N invm f .map = mapᶠ N.-_ (f .map) invm f .linearₚ = tabulateₚ λ i xs r x y → apply-mapᶠ _ _ _ ·· ap N.-_ (linear-at f i xs r x y) ·· N.neg-comm ·· N.+-comm ·· sym (ap₂ N._+_ N.⋆-invr refl) ∙ sym (ap₂ N._+_ (ap (r N.⋆_) (apply-mapᶠ _ _ _)) (apply-mapᶠ _ _ _)) scale : ⌞ R ⌟ → Multilinear-map n Ms N → Multilinear-map n Ms N scale r f .map = mapᶠ (r N.⋆_) (f .map) scale r f .linearₚ = tabulateₚ λ i xs s x y → apply-mapᶠ _ _ _ ·· ap (r N.⋆_) (linear-at f i xs s x y) ·· ⋆-distribl _ _ _ ∙ ap₂ N._+_ (N.⋆-assoc _ _ _ ·· ap₂ N._⋆_ cr refl ·· sym (N.⋆-assoc _ _ _) ∙ ap (s N.⋆_) (sym (apply-mapᶠ _ _ _))) (sym (apply-mapᶠ _ _ _)) open make-module hiding (_+_ ; _⋆_) mk : make-module R (Multilinear-map n Ms N) mk .has-is-set = Iso→is-hlevel 2 eqv $ Σ-is-hlevel 2 (Arrᶠ-is-hlevel 2 (N .fst .is-tr)) λ x → is-prop→is-set $ Πᶠ-is-hlevel 1 λ i → Π-is-hlevel³ 1 λ _ _ _ → Π-is-hlevel 1 λ _ → N .fst .is-tr _ _ -- Structure mk .make-module._+_ = add mk .inv = invm mk .make-module._⋆_ = scale mk .0g .map = constᶠ N.0g mk .0g .linearₚ = tabulateₚ λ i xs r x y → apply-constᶠ _ (updateₚ xs i (r ⋆ x + y)) ∙ sym (N.ab.elimr (apply-constᶠ _ _) ∙ ap (r N.⋆_) (apply-constᶠ _ _) ∙ N.⋆-idr) -- Group laws mk .+-assoc x y z = Multilinear-map-path $ funextᶠ λ as → apply-zipᶠ _ _ _ as ·· ap₂ N._+_ refl (apply-zipᶠ _ _ _ _) ·· N.+-assoc ∙ ap₂ N._+_ (sym (apply-zipᶠ N._+_ _ _ _)) refl ∙ sym (apply-zipᶠ N._+_ _ _ _) mk .+-invl x = Multilinear-map-path $ funextᶠ λ as → apply-zipᶠ _ _ _ _ ·· ap₂ N._+_ (apply-mapᶠ _ _ _) refl ·· N.+-invl ∙ sym (apply-constᶠ _ _) mk .+-idl x = Multilinear-map-path $ funextᶠ λ as → apply-zipᶠ _ _ _ _ ∙ N.ab.eliml (apply-constᶠ _ _) mk .+-comm x y = Multilinear-map-path $ funextᶠ λ as → apply-zipᶠ _ _ _ _ ∙ N.+-comm ∙ sym (apply-zipᶠ N._+_ _ _ _) -- Action laws mk .⋆-distribl r x y = Multilinear-map-path $ funextᶠ λ as → apply-mapᶠ _ _ _ ·· ap (r N.⋆_) (apply-zipᶠ _ _ _ _) ·· N.⋆-distribl _ _ _ ·· sym (ap₂ N._+_ (apply-mapᶠ _ _ _) (apply-mapᶠ _ _ _)) ·· sym (apply-zipᶠ N._+_ _ _ _) mk .⋆-distribr r x y = Multilinear-map-path $ funextᶠ λ as → apply-mapᶠ _ _ _ ·· N.⋆-distribr _ _ _ ·· sym (ap₂ N._+_ (apply-mapᶠ (r N.⋆_) _ _) (apply-mapᶠ (x N.⋆_) _ _)) ∙ sym (apply-zipᶠ N._+_ _ _ _) mk .⋆-assoc r s x = Multilinear-map-path $ funextᶠ λ as → apply-mapᶠ _ _ _ ·· ap (r N.⋆_) (apply-mapᶠ _ _ _) ·· N.⋆-assoc _ _ _ ∙ sym (apply-mapᶠ _ _ _) mk .⋆-id x = Multilinear-map-path $ funextᶠ λ as → apply-mapᶠ _ _ _ ∙ N.⋆-id _
Multilinear-Maps : ∀ {n} {ℓₘ : Fin n → Level} (Ms : (i : Fin n) → Module R (ℓₘ i)) (N : Module R ℓn) → Module R (ℓ-maxᶠ ℓₘ ⊔ ℓn ⊔ ℓ) ∣ Multilinear-Maps Ms N .fst ∣ = Multilinear-map _ Ms N Multilinear-Maps Ms N .fst .is-tr = Multilinear-maps .Module-on.has-is-set Multilinear-Maps Ms N .snd = Multilinear-maps
Currying multilinear maps🔗
If we consider the set of maps as an we are forced to consider the linear maps maps For any concrete these have definitionally equal underlying types and module structures, so it stands to reason that we can construct an isomorphism in the generic case, too. Following the standard convention, we refer to this isomorphism as currying, even though, strictly speaking, none of its concrete instances perform any currying.
module _ {n} {ℓₘ : Fin (suc n) → Level} {Ms : (i : Fin (suc n)) → Module R (ℓₘ i)} {N : Module R ℓn} where private module N = Module-on (N .snd) module Ms i = Module-on (Ms i .snd)
The construction here is fortunately straightforward, since having successor length is concrete enough for the type of finitary curried functions to compute away. The faff lies in shifting indices in the proofs of linearity.
curry-multilinear-map : Linear-map (Ms fzero) (Multilinear-Maps (λ i → Ms (fsuc i)) N) → Multilinear-map (suc n) Ms N curry-multilinear-map lin = ml where ml : Multilinear-map (suc n) _ _ ml .map x = lin .map x .map ml .linearₚ = tabulateₚ λ i xs r x y → case fin-view i of λ where zero → ap (λ e → applyᶠ (e .map) (xs .snd)) (Linear-map.linear lin r x y) ·· apply-zipᶠ _ _ _ _ ·· ap₂ N._+_ (apply-mapᶠ _ _ _) refl (suc i) → linear-at (lin .map (xs .fst)) i (xs .snd) r x y uncurry-multilinear-map : Multilinear-map (suc n) Ms N → Linear-map (Ms fzero) (Multilinear-Maps (λ i → Ms (fsuc i)) N) uncurry-multilinear-map multi = uc where uc : Linear-map _ (Multilinear-Maps _ _) uc .map x .map = multi .map x uc .map x .linearₚ = tabulateₚ λ i xs → Multilinear-map.linear-at multi (fsuc i) (x , xs) uc .lin .linear r s t = Multilinear-map-path $ funextᶠ λ as → linear-at multi fzero (Ms.0g fzero , as) _ _ _ ∙ sym (apply-zipᶠ _ _ _ _ ∙ ap₂ N._+_ (apply-mapᶠ _ _ _) refl)
To stress how well these constructions compute, note that, on the components relevant to equality, currying and uncurrying are definitionally isomorphisms.
uncurry-ml-is-iso : is-iso uncurry-multilinear-map uncurry-ml-is-iso = λ where .is-iso.inv → curry-multilinear-map .is-iso.rinv x → ext λ x → Multilinear-map-path refl .is-iso.linv x → Multilinear-map-path $ funextᶠ λ as → refl module Uncurry = Equiv (_ , is-iso→is-equiv uncurry-ml-is-iso)
1-linear-map : ∀ {ℓₘ : Fin 1 → Level} {M : (i : Fin 1) → Module R (ℓₘ i)} → Linear-map (M fzero) N → Multilinear-map 1 {ℓₘ = ℓₘ} M N 1-linear-map x .map = x .map 1-linear-map x .linearₚ = (λ _ → x .linear) , tt
Apologies for the notation here — I could not find a way to denote
updateₚ α i x
that fits well in the mathematical prose.↩︎