module Cat.Instances.Monads where

Categories of monads🔗

The category of monads of a category consists of monads on and natural transformations preserving the monadic structure. In terms of the bicategory of monads in , a morphism in the 1-categorical version always has the identity functor as the underlying 1-cell. That is, this 1-category of monads on is the fibre of the displayed bicategory of monads in over

A monad homomorphism is a natural transformation preserving the unit and the multiplication In other words, the following two diagrams commute, where is the horizontal composition:

  record is-monad-hom (nat : F => G) (M : Monad-on F) (N : Monad-on G) : Type (o ⊔ h) where
    no-eta-equality
    field
      pres-unit : nat ∘nt M.unit ≡ N.unit
      pres-mult : nat ∘nt M.mult ≡ N.mult ∘nt (nat ◆ nat)

These contain the identity and are closed under composition, as expected.

  id-is-monad-hom : {F : Functor C C} {M : Monad-on F} → is-monad-hom idnt M M
  id-is-monad-hom {M = _} .pres-unit = Endo.idl _
  id-is-monad-hom {M = M} .pres-mult =
    let module M = Monad-on M in
    idnt ∘nt M.mult          ≡⟨ Endo.id-comm-sym ⟩≡
    M.mult ∘nt idnt          ≡˘⟨ ap (M.mult ∘nt_) Endo-∘.F-id ⟩≡˘
    M.mult ∘nt (idnt ◆ idnt) ∎

  ∘-is-monad-hom
    : ∀ {ν : G => H} {ξ : F => G}
    → is-monad-hom ν N O → is-monad-hom ξ M N → is-monad-hom (ν ∘nt ξ) M O
  ∘-is-monad-hom {N = N} {O} {M} {ν} {ξ} p q = mh where
    module M = Monad-on M
    module N = Monad-on N
    module O = Monad-on O
    module ν = is-monad-hom p
    module ξ = is-monad-hom q

    mh : is-monad-hom _ M O
    mh .pres-unit =
      (ν ∘nt ξ) ∘nt M.unit ≡˘⟨ Endo.assoc ν ξ M.unit ⟩≡˘
      ν ∘nt (ξ ∘nt M.unit) ≡⟨ ap (ν ∘nt_) ξ.pres-unit ⟩≡
      ν ∘nt N.unit         ≡⟨ ν.pres-unit ⟩≡
      O.unit               ∎
    mh .pres-mult =
      (ν ∘nt ξ) ∘nt M.mult               ≡˘⟨ Endo.assoc ν ξ M.mult ⟩≡˘
      ν ∘nt (ξ ∘nt M.mult)               ≡⟨ ap (ν ∘nt_) ξ.pres-mult ⟩≡
      ν ∘nt (N.mult ∘nt (ξ ◆ ξ))         ≡⟨ Endo.assoc ν N.mult (ξ ◆ ξ) ⟩≡
      (ν ∘nt N.mult) ∘nt (ξ ◆ ξ)         ≡⟨ ap (_∘nt (ξ ◆ ξ)) ν.pres-mult ⟩≡
      (O.mult ∘nt (ν ◆ ν)) ∘nt (ξ ◆ ξ)   ≡˘⟨ Endo.assoc O.mult (ν ◆ ν) (ξ ◆ ξ) ⟩≡˘
      O.mult ∘nt ((ν ◆ ν) ∘nt (ξ ◆ ξ))   ≡˘⟨ ap (O.mult ∘nt_) $ Endo-∘.F-∘ (ν , ν) (ξ , ξ) ⟩≡˘
      O.mult ∘nt ((ν ∘nt ξ) ◆ (ν ∘nt ξ)) ∎

Putting these together, we have the category of monads.

Monads' : (C : Precategory o h) → Displayed Cat[ C , C ] _ _
Monads' C .Ob[_] = Monad-on
Monads' C .Hom[_] = is-monad-hom
Monads' C .Hom[_]-set _ _ _ = hlevel 2
Monads' C .id' = id-is-monad-hom
Monads' C ._∘'_ = ∘-is-monad-hom
Monads' C .idr' _ = prop!
Monads' C .idl' _ = prop!
Monads' C .assoc' _ _ _ = prop!