module Cat.Instances.Monads where
Categories of monads🔗
The category of monads of a category consists of monads on and natural transformations preserving the monadic structure. In terms of the bicategory of monads in , a morphism in the 1-categorical version always has the identity functor as the underlying 1-cell. That is, this 1-category of monads on is the fibre of the displayed bicategory of monads in over
module _ {C : Precategory o h} where private module C = Cat.Reasoning C variable F G H : Functor C C M N O : Monad-on F Endo : Precategory (o ⊔ h) (o ⊔ h) Endo = Cat[ C , C ] module Endo = Cat.Reasoning Endo Endo-∘-functor : Functor (Endo ×ᶜ Endo) Endo Endo-∘-functor = F∘-functor module Endo-∘ = Functor Endo-∘-functor
A monad homomorphism is a natural transformation preserving the unit and the multiplication In other words, the following two diagrams commute, where is the horizontal composition:
record is-monad-hom (nat : F => G) (M : Monad-on F) (N : Monad-on G) : Type (o ⊔ h) where no-eta-equality
field pres-unit : nat ∘nt M.unit ≡ N.unit pres-mult : nat ∘nt M.mult ≡ N.mult ∘nt (nat ◆ nat)
abstract instance H-Level-is-monad-hom : ∀ {eta n} → H-Level (is-monad-hom eta M N) (suc n) H-Level-is-monad-hom = prop-instance $ Iso→is-hlevel 1 eqv (hlevel 1) where unquoteDecl eqv = declare-record-iso eqv (quote is-monad-hom) open is-monad-hom using (pres-unit ; pres-mult)
These contain the identity and are closed under composition, as expected.
id-is-monad-hom : {F : Functor C C} {M : Monad-on F} → is-monad-hom idnt M M id-is-monad-hom {M = _} .pres-unit = Endo.idl _ id-is-monad-hom {M = M} .pres-mult = let module M = Monad-on M in idnt ∘nt M.mult ≡⟨ Endo.id-comm-sym ⟩≡ M.mult ∘nt idnt ≡˘⟨ ap (M.mult ∘nt_) Endo-∘.F-id ⟩≡˘ M.mult ∘nt (idnt ◆ idnt) ∎ ∘-is-monad-hom : ∀ {ν : G => H} {ξ : F => G} → is-monad-hom ν N O → is-monad-hom ξ M N → is-monad-hom (ν ∘nt ξ) M O ∘-is-monad-hom {N = N} {O} {M} {ν} {ξ} p q = mh where module M = Monad-on M module N = Monad-on N module O = Monad-on O module ν = is-monad-hom p module ξ = is-monad-hom q mh : is-monad-hom _ M O mh .pres-unit = (ν ∘nt ξ) ∘nt M.unit ≡˘⟨ Endo.assoc ν ξ M.unit ⟩≡˘ ν ∘nt (ξ ∘nt M.unit) ≡⟨ ap (ν ∘nt_) ξ.pres-unit ⟩≡ ν ∘nt N.unit ≡⟨ ν.pres-unit ⟩≡ O.unit ∎ mh .pres-mult = (ν ∘nt ξ) ∘nt M.mult ≡˘⟨ Endo.assoc ν ξ M.mult ⟩≡˘ ν ∘nt (ξ ∘nt M.mult) ≡⟨ ap (ν ∘nt_) ξ.pres-mult ⟩≡ ν ∘nt (N.mult ∘nt (ξ ◆ ξ)) ≡⟨ Endo.assoc ν N.mult (ξ ◆ ξ) ⟩≡ (ν ∘nt N.mult) ∘nt (ξ ◆ ξ) ≡⟨ ap (_∘nt (ξ ◆ ξ)) ν.pres-mult ⟩≡ (O.mult ∘nt (ν ◆ ν)) ∘nt (ξ ◆ ξ) ≡˘⟨ Endo.assoc O.mult (ν ◆ ν) (ξ ◆ ξ) ⟩≡˘ O.mult ∘nt ((ν ◆ ν) ∘nt (ξ ◆ ξ)) ≡˘⟨ ap (O.mult ∘nt_) $ Endo-∘.F-∘ (ν , ν) (ξ , ξ) ⟩≡˘ O.mult ∘nt ((ν ∘nt ξ) ◆ (ν ∘nt ξ)) ∎
Putting these together, we have the category of monads.
Monads' : (C : Precategory o h) → Displayed Cat[ C , C ] _ _ Monads' C .Ob[_] = Monad-on Monads' C .Hom[_] = is-monad-hom Monads' C .Hom[_]-set _ _ _ = hlevel 2 Monads' C .id' = id-is-monad-hom Monads' C ._∘'_ = ∘-is-monad-hom Monads' C .idr' _ = prop! Monads' C .idl' _ = prop! Monads' C .assoc' _ _ _ = prop!