module Cat.Functor.Hom.Duality where

Duality of Hom functorsπŸ”—

We prove the obvious dualities between functors of opposite categories, and between representable and corepresentable functors.

Hom-from-op : βˆ€ c β†’ Hom-from (C ^op) c ≑ Hom-into C c
Hom-from-op c = Functor-path (Ξ» _ β†’ refl) (Ξ» _ β†’ refl)

Hom-into-op : βˆ€ c β†’ Hom-into (C ^op) c ≑ opFΛ‘ (Functor.op (Hom-from C c))
Hom-into-op c = Functor-path (Ξ» _ β†’ refl) (Ξ» _ β†’ refl)