module Cat.Functor.Hom.Duality where
Duality of Hom functorsπ
We prove the obvious dualities between functors of opposite categories, and between representable and corepresentable functors.
Hom-from-op : β c β Hom-from (C ^op) c β‘ Hom-into C c Hom-from-op c = Functor-path (Ξ» _ β refl) (Ξ» _ β refl) Hom-into-op : β c β Hom-into (C ^op) c β‘ opFΛ‘ (Functor.op (Hom-from C c)) Hom-into-op c = Functor-path (Ξ» _ β refl) (Ξ» _ β refl)