module Cat.Displayed.Section where
Sections of a displayed category🔗
module _ {o ℓ o' ℓ'} {B : Precategory o ℓ} (E : Displayed B o' ℓ') where private module B = Precategory B module E = Displayed E
A section of a displayed category consists of a functorial assignment of objects and morphisms
In other words, a section of a displayed category is a vertical functor from the identity bifibration of to We restate the definition in elementary terms to drop the additional unit arguments.
record Section : Type (o ⊔ ℓ ⊔ o' ⊔ ℓ') where field S₀ : (x : ⌞ B ⌟) → E ʻ x S₁ : {x y : ⌞ B ⌟} (f : B.Hom x y) → E.Hom[ f ] (S₀ x) (S₀ y) S-id : {x : ⌞ B ⌟} → S₁ {x} {x} B.id ≡ E.id' S-∘ : {x y z : ⌞ B ⌟} (f : B.Hom y z) (g : B.Hom x y) → S₁ (f B.∘ g) ≡ S₁ f E.∘' S₁ g
The equivalence with vertical functors from the identity bifibration is a trivial matter of data repackaging.
open Section open Displayed-functor unquoteDecl Section-path = declare-record-path Section-path (quote Section) section→vertical-functor : Section → Vertical-functor (IdD B) E section→vertical-functor s .F₀' _ = s .S₀ _ section→vertical-functor s .F₁' _ = s .S₁ _ section→vertical-functor s .F-id' = s .S-id section→vertical-functor s .F-∘' = s .S-∘ _ _ section≃vertical-functor : Section ≃ Vertical-functor (IdD B) E section≃vertical-functor .fst = section→vertical-functor section≃vertical-functor .snd = is-iso→is-equiv is where is : is-iso section→vertical-functor is .is-iso.from f .S₀ _ = f .F₀' _ is .is-iso.from f .S₁ _ = f .F₁' _ is .is-iso.from f .S-id = f .F-id' is .is-iso.from f .S-∘ _ _ = f .F-∘' is .is-iso.rinv f = Displayed-functor-pathp refl (λ _ → refl) λ _ → refl is .is-iso.linv s = Section-path refl refl
module _ {o ℓ o' ℓ'} {B : Precategory o ℓ} {E : Displayed B o' ℓ'} where private module E = Displayed E module B = Cat B instance Funlike-Section : Funlike (Section E) B.Ob λ x → E.Ob[ x ] Funlike-Section = record { _·_ = λ S e → S .Section.S₀ e }
We can also specialise the notion of vertical natural transformation to work with sections instead.
record _=>s_ (P Q : Section E) : Type (o ⊔ ℓ ⊔ ℓ') where no-eta-equality private module P = Section P module Q = Section Q field map : (x : ⌞ B ⌟) → E.Hom[ B.id ] (P · x) (Q · x) com : (x y : ⌞ B ⌟) (f : B.Hom x y) → map y E.∘' P.S₁ f E.≡[ B.id-comm-sym ] Q.S₁ f E.∘' map x
{-# INLINE _=>s_.constructor #-} private unquoteDecl eqv = declare-record-iso eqv (quote _=>s_) instance H-Level-Natₛ : ∀ {P Q n} → H-Level (P =>s Q) (2 + n) H-Level-Natₛ = basic-instance 2 (Iso→is-hlevel 2 eqv (hlevel 2)) Extensional-Natₛ : ∀ {P Q ℓr} ⦃ _ : Extensional ((x : ⌞ B ⌟) → E.Hom[ B.id ] (P · x) (Q · x)) ℓr ⦄ → Extensional (P =>s Q) ℓr Extensional-Natₛ = injection→extensional! (λ p → Iso.injective eqv (p ,ₚ prop!)) auto module _ {o ℓ o' ℓ'} {B : Precategory o ℓ} (E : Displayed B o' ℓ') where open Disp E private module B = Cat B open Precategory open Section open _=>s_ Sections : Precategory (o ⊔ o' ⊔ ℓ ⊔ ℓ') (o ⊔ ℓ ⊔ ℓ') Sections .Ob = Section E Sections .Hom = _=>s_ Sections .Hom-set X Y = hlevel 2 Sections .id = record { map = λ x → id' ; com = λ x y f → to-pathp[] id-comm[] } Sections ._∘_ {S} {T} {U} f g = record { map = λ x → hom[ B.idl B.id ] (f .map x ∘' g .map x) ; com = λ x y h → cast[] $ hom[] (f .map y ∘' g .map y) ∘' S .S₁ h ≡[]⟨ unwrap _ ⟩∘'⟨refl ⟩≡[] (f .map y ∘' g .map y) ∘' S .S₁ h ≡[ B.pullr B.id-comm-sym ]⟨ pullr' (λ i → B.id-comm-sym i) (g .com x y h) ⟩] f .map y ∘' T .S₁ h ∘' g .map x ≡[ B.extendl B.id-comm-sym ]⟨ extendl' (λ i → B.id-comm-sym i) (f .com x y h) ⟩] U .S₁ h ∘' f .map x ∘' g .map x ≡[]⟨ refl⟩∘'⟨ wrap _ ⟩≡[] U .S₁ h ∘' hom[] (f .map x ∘' g .map x) ∎ } Sections .idr f = ext λ x → idr[] Sections .idl f = ext λ x → idl[] Sections .assoc f g h = ext λ x → smashr _ _ ∙ ap hom[] (from-pathp⁻ (assoc' _ _ _)) ∙ sym (smashl _ _ ∙ sym (weave _ _ _ (to-pathp⁻ refl)))