module Cat.Displayed.Diagram.Total.Product where
Total Productsπ
module _ {ob βb oe βe} {B : Precategory ob βb} (E : Displayed B oe βe) where open Cat.Reasoning B open Displayed E private variable a x y p : Ob a' x' y' p' : Ob[ a ] f g other : Hom a x f' g' : Hom[ f ] a' x'
Let be a displayed category, and be a product diagram in A diagram of the shape
is a total product diagram if it satisfies a displayed version of the universal property of the product.
record is-total-product {Οβ : Hom p x} {Οβ : Hom p y} (prod : is-product B Οβ Οβ) (Οβ' : Hom[ Οβ ] p' x') (Οβ' : Hom[ Οβ ] p' y') : Type (ob β βb β oe β βe) where no-eta-equality open is-product prod
More explicitly, suppose that we had a triple displayed over as in the following diagram.
is a product, so there exists a unique that commutes with and
This leaves a conspicuous gap in the upstairs portion of the diagram between and is a total product precisely when we have a unique lift of that commutes with and
field β¨_,_β©' : (f' : Hom[ f ] a' x') (g' : Hom[ g ] a' y') β Hom[ β¨ f , g β© ] a' p' Οβββ¨β©' : Οβ' β' β¨ f' , g' β©' β‘[ Οβββ¨β© ] f' Οβββ¨β©' : Οβ' β' β¨ f' , g' β©' β‘[ Οβββ¨β© ] g' unique' : {p1 : Οβ β other β‘ f} {p2 : Οβ β other β‘ g} β {other' : Hom[ other ] a' p'} β (p1' : (Οβ' β' other') β‘[ p1 ] f') β (p2' : (Οβ' β' other') β‘[ p2 ] g') β other' β‘[ unique p1 p2 ] β¨ f' , g' β©'
A total product of and in consists of a choice of a total product diagram.
record Total-product {x y} (prod : Product B x y) (x' : Ob[ x ]) (y' : Ob[ y ]) : Type (ob β βb β oe β βe) where no-eta-equality open Product prod field apex' : Ob[ apex ] Οβ' : Hom[ Οβ ] apex' x' Οβ' : Hom[ Οβ ] apex' y' has-is-total-product : is-total-product has-is-product Οβ' Οβ' open is-total-product has-is-total-product
Total products and total categoriesπ
module _ {ob βb oe βe} {B : Precategory ob βb} {E : Displayed B oe βe} where open Cat.Reasoning B open Displayed E private module β«E = Cat.Reasoning (β« E)
As the name suggests, a total product diagram in induces to a product diagram in the total category of
is-total-productβtotal-is-product : β {x y p} {x' : Ob[ x ]} {y' : Ob[ y ]} {p' : Ob[ p ]} β {Οβ : β«E.Hom (p , p') (x , x')} {Οβ : β«E.Hom (p , p') (y , y')} β {prod : is-product B (Οβ .hom) (Οβ .hom)} β is-total-product E prod (Οβ .preserves) (Οβ .preserves) β is-product (β« E) Οβ Οβ
The proof is largely shuffling data about, so we elide the details.
is-total-productβtotal-is-product {Οβ = Οβ} {Οβ = Οβ} {prod = prod} total-prod = β«prod where open is-product prod open is-total-product total-prod β«prod : is-product (β« E) Οβ Οβ β«prod .is-product.β¨_,_β© f g = total-hom β¨ f .hom , g .hom β© β¨ f .preserves , g .preserves β©' β«prod .is-product.Οβββ¨β© = total-hom-path E Οβββ¨β© Οβββ¨β©' β«prod .is-product.Οβββ¨β© = total-hom-path E Οβββ¨β© Οβββ¨β©' β«prod .is-product.unique p1 p2 = total-hom-path E (unique (ap hom p1) (ap hom p2)) (unique' (ap preserves p1) (ap preserves p2))
Note that a product diagram in a total category does not necessarily yield a product diagram in the base category. For a counterexample, consider the following displayed category:
The total category is equivalent to the terminal category, and thus has products. However, the base category does not have products, as the uniqueness condition fails!