module Cat.Diagram.Product.Solver where
A solver for categories with binary productsπ
Much like the category solver, this module is split into two halves. The first implements an algorithm for normalizing expressions in the language of a category with binary products. The latter half consists of the usual reflection hacks required to transform Agda expressions into our internal expression type.
module NbE {o β} (π : Precategory o β) (cartesian : β A B β Product π A B) where open Cat.Reasoning π open Binary-products π cartesian
Expressionsπ
We begin by defining an expression type for a category with binary products. Mathematically, this /almost/ corresponds to the free category with binary products over a quiver, but we are working with un-quotiented syntax.
data βΆObβΆ : Type (o β β) where _βΆββΆ_ : βΆObβΆ β βΆObβΆ β βΆObβΆ βΆ_βΆ : Ob β βΆObβΆ β¦_β§β : βΆObβΆ β Ob β¦ X βΆββΆ Y β§β = β¦ X β§β ββ β¦ Y β§β β¦ βΆ X βΆ β§β = X data Expr : βΆObβΆ β βΆObβΆ β Type (o β β) where βΆidβΆ : β {X} β Expr X X _βΆββΆ_ : β {X Y Z} β Expr Y Z β Expr X Y β Expr X Z βΆΟββΆ : β {X Y} β Expr (X βΆββΆ Y) X βΆΟββΆ : β {X Y} β Expr (X βΆββΆ Y) Y βΆβ¨_,_β©βΆ : β {X Y Z} β Expr X Y β Expr X Z β Expr X (Y βΆββΆ Z) βΆ_βΆ : β {X Y} β Hom β¦ X β§β β¦ Y β§β β Expr X Y
Note that we also define a syntax for products of objects in this
free category, even though the ambient category π
already has binary products. The
reason for this is two-fold. The first, more mundane reason is that the
unifier will get very confused if we donβt do this. The second reason is
much more mathematically interesting, as it pertains to our choice of
normalization algorithm.
Much like the aforementioned category solver, we are going to be using a variant of Normalization By Evaluation (NbE for short). This class of normalization algorithms operates by constructing a domain of βvaluesβ, which are meant to denote the semantics of some expression. Normalization then occurs in 2 phases: an βevaluationβ phase where we transform expressions into values, and a βquotationβ phase where we reflect values back into expressions. As the values are meant to represent the semantics of an expression, each equivalence class of expressions ought to be mapped to the same value during evaluation. The quotation phase then plucks out a canonical representative for each one of these equivalence classes, which then becomes our normal form.
The particular variant of NbE that we are using is known as Typed NbE. What distinguishes it from Untyped NbE is the treatment of quotation. In Untyped NbE, quotation proceeds in a syntax-directed manner, which makes the enaction of Ξ·-laws1 more difficult. On the other hand, if we quote in a type directed manner, we can perform Ξ·-expansion at every possible opportunity, which simplifies the implementation considerably. This will result in larger normal forms, but the expressions the solver needs to deal with are small, so this isnβt a pressing issue.
Next, we define an interpretation of expressions back into morphisms. This will be used to state the all-important soundness theorem.
β¦_β§β : β {X Y} β Expr X Y β Hom β¦ X β§β β¦ Y β§β β¦ βΆidβΆ β§β = id β¦ e1 βΆββΆ e2 β§β = β¦ e1 β§β β β¦ e2 β§β β¦ βΆΟββΆ β§β = Οβ β¦ βΆΟββΆ β§β = Οβ β¦ βΆβ¨ e1 , e2 β©βΆβΆ β§β = β¨ β¦ e1 β§β , β¦ e2 β§β β© β¦ βΆ f βΆ β§β = f
Valuesπ
Next, we define a type of Values. The goal here is to ensure
that we canβt have any eliminators (in our case, projections) applied to
introduction forms (in our case, β¨_,_β©
). We also need
to handle the normal associativity/identity equations, but those will be
handled by evaluating our expressions into presheaves.
data Value : βΆObβΆ β βΆObβΆ β Type (o β β) where vhom : β {X Y} β Hom β¦ X β§β β¦ Y β§β β Value X Y vpair : β {X Y Z} β Value X Y β Value X Z β Value X (Y βΆββΆ Z)
We now define our eliminators for values.
vfst : β {X Y Z} β Value X (Y βΆββΆ Z) β Value X Y vfst (vhom f) = vhom (Οβ β f) vfst (vpair v1 v2) = v1 vsnd : β {X Y Z} β Value X (Y βΆββΆ Z) β Value X Z vsnd (vhom f) = vhom (Οβ β f) vsnd (vpair v1 v2) = v2 vid : β {X} β Value X X vid = vhom id
Quotationπ
As noted above, our quotation is type-directed to make applying
Ξ·-laws easier. When we encounter a v : Value X (Y βΆββΆ Z)
,
we will always Ξ·-expand it using the eliminators defined above. If
v
is a vpair
, then the
eliminators will compute away, and we will be left with the same value
we started with. If v
is a vhom
, then we will
have Ξ·-expanded it, so all of our normal forms will be /fully/
Ξ·-expanded.
As a terminological note, we call this function reflect
because quote
is a reserved keyword in Agda.
reflect : β X Y β Value X Y β Hom β¦ X β§β β¦ Y β§β reflect X (Y βΆββΆ Z) v = β¨ (reflect X Y (vfst v)) , reflect X Z (vsnd v) β© reflect X βΆ Y βΆ (vhom f) = f
Evaluationπ
Evaluation operates in much the same way as the category solver, where we evaluate to
Value X Y β Value X Z
instead of just
Value Y Z
. This allows us to apply the
associativity/identity equations, as well as the equation that
β¨ f , g β© β h β‘ β¨ f β h , g β h β©
.
eval : β {X Y Z} β Expr Y Z β Value X Y β Value X Z eval βΆidβΆ v = v eval (e1 βΆββΆ e2) v = eval e1 (eval e2 v) eval βΆΟββΆ v = vfst v eval βΆΟββΆ v = vsnd v eval βΆβ¨ e1 , e2 β©βΆβΆ v = vpair (eval e1 v) (eval e2 v) eval βΆ f βΆ v = vhom (f β reflect _ _ v)
As noted earlier, we obtain normal forms by evaluating then quoting.
nf : β X Y β Expr X Y β Hom β¦ X β§β β¦ Y β§β nf X Y e = reflect X Y (eval e vid)
Soundnessπ
Before proving soundness, we need to prove the normal battery of
random lemmas. The first states that quoting a vhom f
gives
us back f
.
vhom-sound : β X Y β (f : Hom β¦ X β§β β¦ Y β§β) β reflect X Y (vhom f) β‘ f vhom-sound X (Y βΆββΆ Z) f = β¨ reflect X Y (vhom (Οβ β f)) , reflect X Z (vhom (Οβ β f)) β© β‘β¨ apβ β¨_,_β© (vhom-sound X Y (Οβ β f)) (vhom-sound X Z (Οβ β f)) β©β‘ β¨ Οβ β f , Οβ β f β© β‘Λβ¨ β¨β©-unique refl refl β©β‘Λ f β vhom-sound X βΆ x βΆ f = refl
Next, some soundless lemmas for our eliminators. We want to show that
applying each eliminator to a value corresponds to the correct thing
once interpreted into our category π
.
vfst-sound : β X Y Z β (v : Value X (Y βΆββΆ Z)) β reflect X Y (vfst v) β‘ Οβ β reflect X (Y βΆββΆ Z) v vfst-sound X Y Z (vhom f) = reflect X Y (vhom (Οβ β f)) β‘β¨ vhom-sound X Y (Οβ β f) β©β‘ Οβ β f β‘Λβ¨ reflβ©ββ¨ vhom-sound X (Y βΆββΆ Z) f β©β‘Λ Οβ β reflect X (Y βΆββΆ Z) (vhom f) β vfst-sound X Y Z (vpair v1 v2) = reflect X Y v1 β‘Λβ¨ Οβββ¨β© β©β‘Λ Οβ β β¨ (reflect X Y v1) , (reflect X Z v2) β© β vsnd-sound : β X Y Z β (v : Value X (Y βΆββΆ Z)) β reflect X Z (vsnd v) β‘ Οβ β reflect X (Y βΆββΆ Z) v vsnd-sound X Y Z (vhom f) = reflect X Z (vhom (Οβ β f)) β‘β¨ vhom-sound X Z (Οβ β f) β©β‘ Οβ β f β‘Λβ¨ reflβ©ββ¨ vhom-sound X (Y βΆββΆ Z) f β©β‘Λ Οβ β reflect X (Y βΆββΆ Z) (vhom f) β vsnd-sound X Y Z (vpair v1 v2) = reflect X Z v2 β‘Λβ¨ Οβββ¨β© β©β‘Λ Οβ β β¨ (reflect X Y v1) , (reflect X Z v2) β© β
We handle composition of values by interpreting expressions as functions /between/ values. So in a sense, this following lemma is a proof of soundness for our interpretation of composition.
sound-k : β X Y Z β (e : Expr Y Z) β (v : Value X Y) β reflect X Z (eval e v) β‘ β¦ e β§β β reflect X Y v sound-k X Y Y βΆidβΆ v = sym (idl _) sound-k X Y Z (e1 βΆββΆ e2) v = reflect X Z (eval e1 (eval e2 v)) β‘β¨ sound-k X _ Z e1 (eval e2 v) β©β‘ β¦ e1 β§β β reflect X _ (eval e2 v) β‘β¨ reflβ©ββ¨ sound-k X Y _ e2 v β©β‘ β¦ e1 β§β β β¦ e2 β§β β reflect X Y v β‘β¨ assoc _ _ _ β©β‘ β¦ e1 βΆββΆ e2 β§β β reflect X Y v β sound-k X (Y βΆββΆ Z) Y βΆΟββΆ v = vfst-sound X Y Z v sound-k X (Y βΆββΆ Z) Z βΆΟββΆ v = vsnd-sound X Y Z v sound-k X Y (Z1 βΆββΆ Z2) βΆβ¨ e1 , e2 β©βΆβΆ v = β¨ reflect X Z1 (eval e1 v) , reflect X Z2 (eval e2 v) β© β‘β¨ apβ β¨_,_β© (sound-k X Y Z1 e1 v) (sound-k X Y Z2 e2 v) β©β‘ β¨ β¦ e1 β§β β reflect X Y v , β¦ e2 β§β β reflect X Y v β© β‘Λβ¨ β¨β©β _ β©β‘Λ β¨ β¦ e1 β§β , β¦ e2 β§β β© β reflect X Y v β sound-k X Y Z βΆ x βΆ v = vhom-sound X Z _
The final soundness proof: normalizing an expression gives us the same morphism as naively interpreting the expression.
sound : β X Y β (e : Expr X Y) β nf X Y e β‘ β¦ e β§β sound X Y e = sound-k X X Y e vid β elimr (vhom-sound X X id)
Solver interfaceπ
In order to make the reflection easier later, we bundle up the soundness proof. Marking this as abstract is very important. This prevents agda from unfolding into an absolutely enormous proof when used as a macro, which is critical for performance.
abstract solve : β X Y β (e1 e2 : Expr X Y) β nf X Y e1 β‘ nf X Y e2 β β¦ e1 β§β β‘ β¦ e2 β§β solve X Y e1 e2 p = sym (sound X Y e1) Β·Β· p Β·Β· sound X Y e2
Reflectionπ
As per usual, this is the hard part. Reflection is normally quite tricky, but the situation here is even harder than the category solver, as we need to reflect on objects as well as morphisms.
We begin by defining a bunch of pattern synonyms for matching on various fields of precategories, as well as objects + morphisms that arise from the product structure.
The situation here is extremely fiddly when it comes to implicit
arguments, as we not only need to get the number correct, but also their
multiplicity. Record projections always mark the records parameters as
hidden
and quantity-0
, so we need to take care to do
the same in these patterns.
module Reflection where private pattern is-product-field X Y args = _ hmβ· _ hmβ· _ hmβ· -- category args X hmβ· Y hmβ· -- objects of product _ hmβ· -- apex _ hmβ· _ hmβ· -- projections _ vβ· -- is-product record argument args pattern product-field X Y args = _ hmβ· _ hmβ· _ hmβ· -- category args X hmβ· Y hmβ· -- objects of product _ vβ· -- product record argument args pattern category-field args = _ hmβ· _ hmβ· _ vβ· args pattern βββ X Y = def (quote Product.apex) (product-field X Y []) pattern βidβ X = def (quote Precategory.id) (category-field (X hβ· [])) pattern βββ X Y Z f g = def (quote Precategory._β_) (category-field (X hβ· Y hβ· Z hβ· f vβ· g vβ· [])) pattern βΟββ X Y = def (quote (Product.Οβ)) (product-field X Y []) pattern βΟββ X Y = def (quote (Product.Οβ)) (product-field X Y []) pattern ββ¨β©β X Y Z f g = def (quote (is-product.β¨_,_β©)) (is-product-field Y Z (X hβ· f vβ· g vβ· []))
Next, we define some helpers to make constructing things in the NbE
module easier.
mk-nbe-con : Name β List (Arg Term) β Term mk-nbe-con con-name args = con con-name (unknown hβ· unknown hβ· unknown hβ· unknown hβ· args) mk-nbe-call : Term β Term β List (Arg Term) β List (Arg Term) mk-nbe-call cat cart args = unknown hβ· unknown hβ· cat vβ· cart vβ· args
We also define some helpers for building quoted calls to NbE.nf
and NbE.solve
.
βnfβ : Term β Term β Term β Term β Term β Term βnfβ cat cart x y e = def (quote NbE.nf) (mk-nbe-call cat cart (x vβ· y vβ· e vβ· [])) βsolveβ : Term β Term β Term β Term β Term β Term β Term βsolveβ cat cart x y lhs rhs = def (quote NbE.solve) $ mk-nbe-call cat cart (x vβ· y vβ· lhs vβ· rhs vβ· βreflβ vβ· [])
Now for the meat of the reflection. build-obj-expr
will
construct quoted terms of type NbE.βΆObβΆ
from
quoted terms of type Precategory.Ob
.
build-hom-expr
does the same thing, but for NbE.Expr
and
Precategory.Hom
.
Note that we apply all implicits to constructors in
build-hom-expr
. If we donβt do this, Agda will get
very upset.
build-obj-expr : Term β Term build-obj-expr (βββ X Y) = con (quote NbE.βΆObβΆ._βΆββΆ_) (build-obj-expr X vβ· build-obj-expr Y vβ· []) build-obj-expr X = con (quote NbE.βΆObβΆ.βΆ_βΆ) (X vβ· []) build-hom-expr : Term β Term build-hom-expr (βidβ X) = mk-nbe-con (quote NbE.Expr.βΆidβΆ) $ build-obj-expr X hβ· [] build-hom-expr (βββ X Y Z f g) = mk-nbe-con (quote NbE.Expr._βΆββΆ_) $ build-obj-expr X hβ· build-obj-expr Y hβ· build-obj-expr Z hβ· build-hom-expr f vβ· build-hom-expr g vβ· [] build-hom-expr (βΟββ X Y) = mk-nbe-con (quote NbE.Expr.βΆΟββΆ) $ build-obj-expr X hβ· build-obj-expr Y hβ· [] build-hom-expr (βΟββ X Y) = mk-nbe-con (quote NbE.Expr.βΆΟββΆ) $ build-obj-expr X hβ· build-obj-expr Y hβ· [] build-hom-expr (ββ¨β©β X Y Z f g) = mk-nbe-con (quote NbE.Expr.βΆβ¨_,_β©βΆ) $ build-obj-expr X hβ· build-obj-expr Y hβ· build-obj-expr Z hβ· build-hom-expr f vβ· build-hom-expr g vβ· [] build-hom-expr f = con (quote NbE.Expr.βΆ_βΆ) (f vβ· [])
Now, for the solver interface. This follows the usual pattern: we
create a list of names that we will pass to withReduceDefs
, which will
prevent Agda from normalizing away the things we want to reflect
upon.
dont-reduce : List Name dont-reduce = quote Precategory.Hom β· quote Precategory.id β· quote Precategory._β_ β· quote Product.apex β· quote Product.Οβ β· quote Product.Οβ β· quote is-product.β¨_,_β© β· []
We will need to recover the objects from some quoted hom to make the calls to the solver/normaliser.
get-objects : Term β TC (Term Γ Term) get-objects tm = ((infer-type tm >>= normalise) >>= wait-just-a-bit) >>= Ξ» where (def (quote Precategory.Hom) (category-field (x vβ· y vβ· []))) β pure (x , y) tp β typeError $ strErr "Can't determine objects: " β· termErr tp β· []
We also make some debugging macros, which are very useful for when you want to examine the exact quoted representations of objects/homs.
obj-repr-macro : β {o β} (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ obj-repr-macro cat cart hom hole = withReconstructed true $ withNormalisation false $ withReduceDefs (false , dont-reduce) $ do (x , y) β get-objects hom βxβ β build-obj-expr <$> normalise x βyβ β build-obj-expr <$> normalise y typeError $ strErr "Determined objects of " β· termErr hom β· strErr " to be\n " β· termErr x β· strErr "\nAnd\n " β· termErr y β· strErr "\nWith quoted representations\n " β· termErr βxβ β· strErr "\nAnd\n " β· termErr βyβ β· [] hom-repr-macro : β {o β} (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ hom-repr-macro cat cart hom hole = withReconstructed true $ withNormalisation false $ withReduceDefs (false , dont-reduce) $ do (x , y) β get-objects hom βxβ β build-obj-expr <$> normalise x βyβ β build-obj-expr <$> normalise y βhomβ β build-hom-expr <$> normalise hom typeError $ strErr "The morphism\n " β· termErr hom β· strErr "\nis represented by\n " β· termErr βhomβ β· strErr "\nwith objects\n " β· termErr βxβ β· strErr "\nAnd\n " β· termErr βyβ β· []
Now, the simplifier and solver reflection. This just puts together all of our bits from before.
There is one subtlety here with regards to
withReconstructed
. We are reflecting on the record
parameters to Product
and is-product
to determine the objects
involved in things like β¨_,_β©
, which Agda will
mark as unknown
by default. This will cause build-obj-expr
to then fail
when we have expressions involving nested _β_
.
Wrapping everything in withReconstructed
causes Agda to
fill in these arguments with their actual values, which then fixes the
issue.
simpl-macro : β {o β} (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ simpl-macro cat cart hom hole = withReconstructed true $ withNormalisation false $ withReduceDefs (false , dont-reduce) $ do (x , y) β get-objects hom βxβ β build-obj-expr <$> normalise x βyβ β build-obj-expr <$> normalise y βhomβ β build-hom-expr <$> normalise hom βcatβ β quoteTC cat βcartβ β quoteTC cart unify hole (βnfβ βcatβ βcartβ βxβ βyβ βhomβ) solve-macro : β {o β} (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β TC β€ solve-macro cat cart hole = noConstraints $ withReconstructed true $ withNormalisation false $ withReduceDefs (false , dont-reduce) $ do goal β infer-type hole >>= reduce just (lhs , rhs) β get-boundary goal where nothing β typeError $ strErr "Can't determine boundary: " β· termErr goal β· [] (x , y) β get-objects lhs (x' , y') β get-objects rhs unify x x' unify y y' βxβ β build-obj-expr <$> normalise x βyβ β build-obj-expr <$> normalise y βlhsβ β build-hom-expr <$> normalise lhs βrhsβ β build-hom-expr <$> normalise rhs βcatβ β quoteTC cat βcartβ β quoteTC cart (unify hole (βsolveβ βcatβ βcartβ βxβ βyβ βlhsβ βrhsβ)) <|> do vlhs β normalise $ (βnfβ βcatβ βcartβ βxβ βyβ βlhsβ) vrhs β normalise $ (βnfβ βcatβ βcartβ βxβ βyβ βrhsβ) typeError $ strErr "Could not equate the following expressions:\n " β· termErr lhs β· strErr "\nAnd\n " β· termErr rhs β· strErr "\nReflected expressions\n " β· termErr βlhsβ β· strErr "\nAnd\n " β· termErr βrhsβ β· strErr "\nComputed normal forms\n " β· termErr vlhs β· strErr "\nAnd\n " β· termErr vrhs β· []
Finally, we define the user-facing interface as a series of macros.
macro products-obj-repr! : β {o β} β (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ products-obj-repr! = Reflection.obj-repr-macro products-repr! : β {o β} β (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ products-repr! = Reflection.hom-repr-macro products-simpl! : β {o β} β (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β Term β TC β€ products-simpl! = Reflection.simpl-macro products! : β {o β} β (π : Precategory o β) (cartesian : β X Y β Product π X Y) β Term β TC β€ products! = Reflection.solve-macro
Demoπ
Wow, that was a lot of hard work! Letβs marvel at the fruits of our labor.
private module Tests {o β} (π : Precategory o β) (cartesian : β X Y β Product π X Y) where open Precategory π open Binary-products π cartesian open NbE π cartesian test-Ξ· : β {X Y Z} β (f : Hom X (Y ββ Z)) β f β‘ β¨ Οβ β f , Οβ β f β© test-Ξ· f = products! π cartesian test-Ξ²β : β {X Y Z} β (f : Hom X Y) β (g : Hom X Z) β Οβ β β¨ f , g β© β‘ f test-Ξ²β f g = products! π cartesian test-Ξ²β : β {X Y Z} β (f : Hom X Y) β (g : Hom X Z) β Οβ β β¨ f , g β© β‘ g test-Ξ²β f g = products! π cartesian test-β¨β©β : β {W X Y Z} β (f : Hom X Y) β (g : Hom X Z) β (h : Hom W X) β β¨ f β h , g β h β© β‘ β¨ f , g β© β h test-β¨β©β f g h = products! π cartesian -- If you don't have 'withReconstructed' on, this test will fail! test-nested : β {W X Y Z} β (f : Hom W X) β (g : Hom W Y) β (h : Hom W Z) β β¨ β¨ f , g β© , h β© β‘ β¨ β¨ f , g β© , h β© test-nested {W} {X} {Y} {Z} f g h = products! π cartesian test-big : β {W X Y Z} β (f : Hom (W ββ X) (W ββ Y)) β (g : Hom (W ββ X) Z) β (Οβ β β¨ f , g β©) β id β‘ id β β¨ Οβ , Οβ β© β f test-big f g = products! π cartesian
In our context, an Ξ·-law is something like
β¨ Οβ β f , Οβ β f β© β‘ f
, where we have an introduction form wrapping a bunch of eliminators applied to the same expression.β©οΈ