module Cat.Diagram.Equaliser.Kernel where
Kernels🔗
In a category with equalisers and a zero object a kernel of a morphism is an equaliser of and the zero morphism hence a subobject of the domain of
module _ (∅ : Zero C) where open Zero ∅ is-kernel : ∀ {a b ker} (f : Hom a b) (k : Hom ker a) → Type _ is-kernel f = is-equaliser C f zero→ kernels-are-subobjects : ∀ {a b ker} {f : Hom a b} (k : Hom ker a) → is-kernel f k → is-monic k kernels-are-subobjects = is-equaliser→is-monic record Kernel {a b} (f : Hom a b) : Type (o ⊔ ℓ) where field {ker} : Ob kernel : Hom ker a has-is-kernel : is-kernel f kernel open is-equaliser has-is-kernel public
Lemma: Let be a category with equalisers and a zero object. In the kernel of a kernel is zero. First, note that if a category has a choice of zero object and a choice of equaliser for any pair of morphisms, then it has canonically-defined choices of kernels:
module Canonical-kernels (zero : Zero C) (eqs : ∀ {a b} (f g : Hom a b) → Equaliser C f g) where open Zero zero open Kernel Ker : ∀ {a b} (f : Hom a b) → Kernel zero f Ker f .ker = _ Ker f .kernel = eqs f zero→ .Equaliser.equ Ker f .has-is-kernel = eqs _ _ .Equaliser.has-is-eq
We now show that the maps and are inverses. In one direction the composite is in so it is trivially unique. In the other direction, we have maps which, since is a limit, are uniquely determined if they are cone homomorphisms.
Ker-of-ker≃∅ : ∀ {a b} (f : Hom a b) → Ker (Ker f .kernel) .ker ≅ ∅ Ker-of-ker≃∅ f = make-iso ! ¡ (!-unique₂ _ _) p where module Kf = Kernel (Ker f) module KKf = Kernel (Ker (Ker f .kernel))
The calculation is straightforward enough: The hardest part is showing that (here we are talking about the inclusion maps, not the objects) — but recall that equalises and so we have
p : ¡ ∘ ! ≡ id p = KKf.unique₂ (zero-comm _ _) (zero-∘l _) (Kf.unique₂ (extendl (zero-comm _ _)) (pulll KKf.equal ∙ idr _) (zero-comm _ _))