module Cat.Univalent.Instances.Opposite {o β} {C : Precategory o β} where
Opposites of univalent categoriesπ
A simple case of closure of univalence is the duality involution: Since isomorphisms in are the same as isomorphisms in the former is univalent iff the latter is.
opposite-is-category : is-category C β is-category (C ^op) opposite-is-category x .to-path i = x .to-path $ C.make-iso (i .Cop.from) (i .Cop.to) (i .Cop.invl) (i .Cop.invr) opposite-is-category x .to-path-over p = Cop.β -pathp refl _ $ Univalent.Hom-pathp-refll-iso x (C.idl _)