module Cat.Internal.Instances.Congruence
  {o } {C : Precategory o }
  (fc : Finitely-complete C)
  where

Internal categories from congruences🔗

Let be a finitely complete category, and recall that a congruence in is an internalized notion of equivalence relation. Intuitively, we should be able to turn this into an internal category, where we have an internal morphism if and only if and are congruent.

EquivRel :  {A}  Congruence-on A  Internal-cat
EquivRel {A} cong = icat where
  open Congruence-on cong
  private module R×R = Pullback (fc.pullbacks rel₁ rel₂)

The object of objects of the internal category will simply be and the object of morphisms is given by the subobject of associated with the congruence. The source and target maps are given by projections from the aforementioned subobject.

  icat : Internal-cat
  icat .C₀ = A
  icat .C₁ = domain
  icat .src = rel₁
  icat .tgt = rel₂

As aluded to earlier, the identity morphism is given by reflexivity, and composition by transitivity.

  icat .has-internal-cat .idi x .ihom = has-refl  x
  icat .has-internal-cat .idi x .has-src = cancell refl-p₁
  icat .has-internal-cat .idi x .has-tgt = cancell refl-p₂
  icat .has-internal-cat ._∘i_ f g .ihom =
    has-trans  pullback.universal _ _ (f .has-src  sym (g .has-tgt))
  icat .has-internal-cat ._∘i_ f g .has-src =
       pulll trans-p₁
    ∙∙ pullr R×R.p₂∘universal
    ∙∙ g .has-src
  icat .has-internal-cat ._∘i_ f g .has-tgt =
       pulll trans-p₂
    ∙∙ pullr R×R.p₁∘universal
    ∙∙ f .has-tgt
Proving the category equations is an exercise in shuffling around products and pullbacks.
  icat .has-internal-cat .idli {x = x} {y = y} f =
    Internal-hom-path $
    has-is-monic _ _ $
    inclusion  has-trans  R×R.universal _  ≡⟨ unpair-trans _ 
     rel₁  f .ihom , rel₂  has-refl  y  ≡⟨ ap₂ ⟨_,_⟩ (f .has-src) (pulll refl-p₂  idl _) 
     x , y                                 ≡˘⟨ ⟨⟩-unique (assoc _ _ _  f .has-src) (assoc _ _ _  f .has-tgt) ≡˘
    inclusion  f .ihom                      
  icat .has-internal-cat .idri {x = x} {y = y} f =
    Internal-hom-path $
    has-is-monic _ _ $
    inclusion  has-trans  R×R.universal _  ≡⟨ unpair-trans _ 
     rel₁  has-refl  x , rel₂  f .ihom  ≡⟨ ap₂ ⟨_,_⟩ (pulll refl-p₁  idl _) (f .has-tgt) 
     x , y                                 ≡˘⟨ ⟨⟩-unique (assoc _ _ _  f .has-src) (assoc _ _ _  f .has-tgt) ≡˘
    inclusion  f .ihom 
  icat .has-internal-cat .associ {w = w} {x = x} {y = y} {z = z} f g h =
    Internal-hom-path $
    has-is-monic _ _ $
    inclusion  has-trans  R×R.universal _                 ≡⟨ unpair-trans _ 
     rel₁  has-trans  R×R.universal _ , rel₂  f .ihom  ≡⟨ ap₂ ⟨_,_⟩ (pulll trans-p₁  pullr R×R.p₂∘universal) refl 
     rel₁  h .ihom , rel₂  f .ihom                      ≡˘⟨ ap₂ ⟨_,_⟩ refl (pulll trans-p₂  pullr R×R.p₁∘universal) ≡˘
     rel₁  h .ihom , rel₂  has-trans  R×R.universal _  ≡˘⟨ unpair-trans _ ≡˘
    inclusion  has-trans  R×R.universal _ 
  icat .has-internal-cat .idi-nat σ =
    Internal-hom-path (sym (assoc _ _ _))
  icat .has-internal-cat .∘i-nat f g σ =
    Internal-hom-path $
    sym (assoc _ _ _)
     ap (has-trans ∘_) (R×R.unique (pulll R×R.p₁∘universal) (pulll R×R.p₂∘universal))