module Cat.Functor.Adjoint.Mate where
Mates🔗
Let be a pair of adjunctions, and let and be a pair of functors, fitting together into a diagram
which needn’t necessarily commute. By pasting with the adjunction units and counits, there is an equivalence between the sets of natural transformations and which in one direction sends
to
We call natural transformations and mates, with respect to the adjunctions and if they correspond under this equivalence.
open Functor module _ {oa ℓa ob ℓb oc ℓc od ℓd} {A : Precategory oa ℓa} {A' : Precategory ob ℓb} {B : Precategory oc ℓc} {B' : Precategory od ℓd} {F : Functor A B} {U : Functor B A} {F' : Functor A' B'} {U' : Functor B' A'} (F⊣U : F ⊣ U) (F'⊣U' : F' ⊣ U') (X : Functor A A') (Y : Functor B B') where private module F⊣U = _⊣_ F⊣U module F'⊣U' = _⊣_ F'⊣U' module U = Cat.Functor.Reasoning U module U' = Cat.Functor.Reasoning U' module F = Cat.Functor.Reasoning F module F' = Cat.Functor.Reasoning F' module X = Cat.Functor.Reasoning X module Y = Cat.Functor.Reasoning Y module A = Cat.Reasoning A module B = Cat.Reasoning B module A' = Cat.Reasoning A' module B' = Cat.Reasoning B' private η : ∀ {x} → A.Hom x (U.₀ (F.₀ x)) η = F⊣U.unit.η _ ε : ∀ {x} → B.Hom (F.₀ (U.₀ x)) x ε = F⊣U.counit.ε _ η' : ∀ {x} → A'.Hom x (U'.₀ (F'.₀ x)) η' = F'⊣U'.unit.η _ ε' : ∀ {x} → B'.Hom (F'.₀ (U'.₀ x)) x ε' = F'⊣U'.counit.ε _
Unfortunately, proof assistants: if we were to define mates by pasting, we would get a natural transformation with much worse definitional behaviour. Therefore, we calculate the mate of a transformation by hand.
mate : (X F∘ U) => (U' F∘ Y) → (F' F∘ X) => (Y F∘ F) mate α = nt module mate where module α = _=>_ α nt : (F' F∘ X) => (Y F∘ F) nt ._=>_.η _ = ε' B'.∘ F'.₁ (α.η _) B'.∘ F'.₁ (X.₁ η) nt ._=>_.is-natural x y f = (ε' B'.∘ F'.₁ (α.η _) B'.∘ F'.₁ (X.₁ η)) B'.∘ F'.₁ (X.₁ f) ≡⟨ B'.extendr (B'.pullr (F'.weave (X.weave (F⊣U.unit.is-natural _ _ _)))) ⟩≡ (ε' B'.∘ F'.₁ (α.η _)) B'.∘ F'.₁ (X.₁ (U.₁ (F.₁ f))) B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.extendl (B'.extendr (F'.weave (α.is-natural _ _ _))) ⟩≡ (ε' B'.∘ F'.₁ (U'.₁ (Y.₁ (F.₁ f)))) B'.∘ F'.₁ (α.η _) B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.pushl (F'⊣U'.counit.is-natural _ _ _) ⟩≡ Y.₁ (F.₁ f) B'.∘ (ε' B'.∘ F'.₁ (α.η _) B'.∘ F'.₁ (X.₁ η)) ∎
By a very similar calculation, we can define the mate of
mate-inv : (F' F∘ X) => (Y F∘ F) → (X F∘ U) => (U' F∘ Y) mate-inv α = nt module mate-inv where module α = _=>_ α nt : (X F∘ U) => (U' F∘ Y) nt ._=>_.η _ = U'.₁ (Y.₁ ε) A'.∘ U'.₁ (α.η _) A'.∘ η' nt ._=>_.is-natural x y f = (U'.₁ (Y.₁ ε) A'.∘ U'.₁ (α.η _) A'.∘ η') A'.∘ X.₁ (U.₁ f) ≡⟨ A'.extendr (A'.pullr (F'⊣U'.unit.is-natural _ _ _)) ⟩≡ (U'.₁ (Y.₁ ε) A'.∘ U'.₁ (α.η (U.₀ y))) A'.∘ U'.₁ (F'.₁ (X.₁ (U.₁ f))) A'.∘ η' ≡⟨ A'.extendl (A'.extendr (U'.weave (α.is-natural _ _ _))) ⟩≡ (U'.₁ (Y.₁ ε) A'.∘ U'.₁ (Y.₁ (F.₁ (U.₁ f)))) A'.∘ U'.₁ (α.η _) A'.∘ η' ≡⟨ A'.pushl (U'.weave (Y.weave (F⊣U.counit.is-natural _ _ f))) ⟩≡ U'.₁ (Y.₁ f) A'.∘ U'.₁ (Y.₁ ε) A'.∘ U'.₁ (α.η _) A'.∘ η' ∎
By some rather tedious applications of the triangle identities, we
can calculate that the operations mate
and mate-inv
are inverse
equivalences.
mate-invl : ∀ (α : (F' F∘ X) => (Y F∘ F)) → mate (mate-inv α) ≡ α mate-invl α = ext λ _ → ε' B'.∘ ⌜ F'.₁ (U'.₁ (Y.₁ ε) A'.∘ U'.₁ (α.η _) A'.∘ η') ⌝ B'.∘ F'.₁ (X.₁ η) ≡⟨ ap! (F'.F-∘ _ _ ∙ (ap₂ B'._∘_ refl (F'.F-∘ _ _))) ⟩≡ ε' B'.∘ (F'.₁ (U'.₁ (Y.₁ ε)) B'.∘ F'.₁ (U'.₁ (α.η _)) B'.∘ F'.₁ η') B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.extendl (B'.pulll (F'⊣U'.counit.is-natural _ _ _)) ⟩≡ (Y.₁ ε B'.∘ ε') B'.∘ (F'.₁ (U'.₁ (α.η _)) B'.∘ F'.₁ η') B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.extendl (B'.pulll (B'.pullr (F'⊣U'.counit.is-natural _ _ _))) ⟩≡ (Y.₁ ε B'.∘ α.η _ B'.∘ ε') B'.∘ F'.₁ η' B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.pulll (B'.pullr (B'.cancelr F'⊣U'.zig)) ⟩≡ (Y.₁ ε B'.∘ α.η _) B'.∘ F'.₁ (X.₁ η) ≡⟨ B'.pullr (α.is-natural _ _ _) ⟩≡ Y.₁ ε B'.∘ Y.₁ (F.₁ η) B'.∘ α.η _ ≡⟨ B'.cancell (Y.annihilate F⊣U.zig) ⟩≡ α.η _ ∎ where module α = _=>_ α mate-invr : ∀ (α : (X F∘ U) => (U' F∘ Y)) → mate-inv (mate α) ≡ α mate-invr α = ext λ _ → U'.₁ (Y.₁ ε) A'.∘ ⌜ U'.₁ (ε' B'.∘ F'.₁ (α.η _) B'.∘ F'.₁ (X.₁ η)) ⌝ A'.∘ η' ≡⟨ ap! (U'.F-∘ _ _ ∙ (ap₂ A'._∘_ refl (U'.F-∘ _ _))) ⟩≡ U'.₁ (Y.₁ ε) A'.∘ (U'.₁ ε' A'.∘ U'.₁ (F'.₁ (α.η _)) A'.∘ U'.₁ (F'.₁ (X.₁ η))) A'.∘ η' ≡⟨ ap₂ A'._∘_ refl (A'.extendr (A'.pullr (sym (F'⊣U'.unit.is-natural _ _ _)))) ⟩≡ U'.₁ (Y.₁ ε) A'.∘ (U'.₁ ε' A'.∘ U'.₁ (F'.₁ (α.η _))) A'.∘ η' A'.∘ X.₁ η ≡⟨ ap₂ A'._∘_ refl (A'.pullr (A'.extendl (sym (F'⊣U'.unit.is-natural _ _ _)))) ⟩≡ U'.₁ (Y.₁ ε) A'.∘ U'.₁ ε' A'.∘ η' A'.∘ α.η _ A'.∘ X.₁ η ≡⟨ ap₂ A'._∘_ refl (A'.cancell F'⊣U'.zag) ⟩≡ U'.₁ (Y.₁ ε) A'.∘ α.η _ A'.∘ X.₁ η ≡⟨ A'.pulll (sym (α.is-natural _ _ _)) ⟩≡ (α.η _ A'.∘ X.₁ (U.₁ ε)) A'.∘ X.₁ η ≡⟨ A'.cancelr (X.annihilate F⊣U.zag) ⟩≡ α.η _ ∎ where module α = _=>_ α mate-is-equiv : is-equiv mate mate-is-equiv = is-iso→is-equiv (iso mate-inv mate-invl mate-invr)