module Cat.Displayed.Instances.Simple.Properties {o β} (B : Precategory o β) (has-prods : β X Y β Product B X Y) where
open Cat.Reasoning B open Cat.Displayed.Instances.Simple B has-prods renaming (Simple to Simple[B]) open Binary-products B has-prods
Properties of simple fibrationsπ
This module collects some useful properties of simple fibrations.
Total products in simple fibrationsπ
Every simple fibration has all total products.
simple-total-product : β {Ξ Ξ A B : Ob} β Total-product Simple[B] (has-prods Ξ Ξ) A B
simple-total-product {Ξ} {Ξ} {A} {B} = total-prod where open is-total-product open Total-product total-prod : Total-product Simple[B] (has-prods Ξ Ξ) A B
The apex of the total product is simply given by a product in We can obtain the projections and by composing projections.
total-prod .apex' = A ββ B total-prod .Οβ' = Οβ β Οβ total-prod .Οβ' = Οβ β Οβ
The universal property follows from some straightforward algebra.
total-prod .has-is-total-product .β¨_,_β©' f g = β¨ f , g β© total-prod .has-is-total-product .Οβββ¨β©' = pullr Οβββ¨β© β Οβββ¨β© total-prod .has-is-total-product .Οβββ¨β©' = pullr Οβββ¨β© β Οβββ¨β© total-prod .has-is-total-product .unique' p q = β¨β©-unique (pushr (sym Οβββ¨β©) β p) (pushr (sym Οβββ¨β©) β q)