module Cat.Diagram.Equaliser.RegularMono where
Regular monomorphismsπ
A regular monomorphism is a morphism that behaves like an embedding, i.e.Β it is an isomorphism onto its image. Since images of arbitrary morphisms do not exist in every category, we must find a definition which implies this property but only speaks diagrammatically about objects directly involved in the definition.
The definition is as follows: A regular monomorphism is an equaliser of some pair of arrows
record is-regular-mono (f : Hom a b) : Type (o β β) where no-eta-equality field {c} : Ob arrβ arrβ : Hom b c has-is-eq : is-equaliser C arrβ arrβ f open is-equaliser has-is-eq public
From the definition we can directly conclude that regular monomorphisms are in fact monomorphisms:
is-regular-monoβis-mono : is-monic f is-regular-monoβis-mono = is-equaliserβis-monic _ has-is-eq open is-regular-mono using (is-regular-monoβis-mono) public
Effective monomorphismsπ
Proving that a map is a regular monomorphism involves finding two maps which it equalises, but if is a category with pushouts, there is often a canonical choice: The cokernel pair of that is, the pushout of along with itself. Morphisms which a) have a cokernel pair and b) equalise their cokernel pair are called effective monomorphisms.
record is-effective-mono (f : Hom a b) : Type (o β β) where no-eta-equality field {cokernel} : Ob iβ iβ : Hom b cokernel is-cokernel-pair : is-pushout C f iβ f iβ has-is-equaliser : is-equaliser C iβ iβ f
Every effective monomorphism is a regular monomorphism, since it equalises the inclusions of its cokernel pair.
is-effective-monoβis-regular-mono : is-regular-mono f is-effective-monoβis-regular-mono = rm where open is-regular-mono rm : is-regular-mono f rm .c = _ rm .arrβ = _ rm .arrβ = _ rm .has-is-eq = has-is-equaliser
If has a cokernel pair, and it is a regular monomorphism, then it is also effective β it is the equaliser of its cokernel pair.
module _ {o β} (C : Precategory o β) where open Cat.Reasoning C open Initial open βObj open βHom open /-Obj open /-Hom
is-regular-monoβis-effective-mono : β {a b} {f : Hom a b} β Pushout C f f β is-regular-mono C f β is-effective-mono C f is-regular-monoβis-effective-mono {f = f} cokern reg = mon where module fβf = Pushout cokern module reg = is-regular-mono reg
Let be the equaliser of By the universal property of the cokernel pair of we have a map such that and
phi : Hom fβf.coapex reg.c phi = fβf.universal reg.equal open is-effective-mono mon : is-effective-mono C f mon .cokernel = fβf.coapex mon .iβ = fβf.iβ mon .iβ = fβf.iβ mon .is-cokernel-pair = fβf.has-is-po mon .has-is-equaliser = eq where
To show that also has the universal property of the equaliser of suppose that also equalises the injections. Then we can calculate:
So equalises the same arrows that does, hence there is a universal map which commutes with βeverything in sightβ:
open is-equaliser eq : is-equaliser _ _ _ _ eq .equal = fβf.square eq .universal {F = F} {e' = e'} p = reg.universal p' where p' : reg.arrβ β e' β‘ reg.arrβ β e' p' = reg.arrβ β e' β‘Λβ¨ ap (_β e') fβf.universalβiβ β©β‘Λ (phi β fβf.iβ) β e' β‘β¨ extendr p β©β‘ (phi β fβf.iβ) β e' β‘β¨ ap (_β e') fβf.universalβiβ β©β‘ reg.arrβ β e' β eq .factors = reg.factors eq .unique = reg.unique
If has a canonical choice of pushout along itself, then it suffices to check that it equalises those injections to show it is an effective mono.
equalises-cokernel-pairβis-effective-mono : β {a b} {f : Hom a b} β (P : Pushout C f f) β is-equaliser C (P .Pushout.iβ) (P .Pushout.iβ) f β is-effective-mono C f equalises-cokernel-pairβis-effective-mono P eq = em where open is-effective-mono em : is-effective-mono _ _ em .cokernel = _ em .iβ = _ em .iβ = _ em .is-cokernel-pair = P .Pushout.has-is-po em .has-is-equaliser = eq
Images of regular monosπ
Let be an effective mono, or, in a category with pushouts, a regular mono. We show that admits an image relative to the class of regular monomorphisms. The construction of the image is as follows: We let and factor as
This factorisation is very straightforwardly shown to be universal, as the code below demonstrates.
is-effective-monoβimage : β {a b} {f : Hom a b} β is-effective-mono C f β M-image C (is-regular-mono C , is-regular-monoβis-mono) f is-effective-monoβimage {f = f} mon = im where module eff = is-effective-mono mon itself : βObj _ _ itself .x = tt itself .y = cut f , eff.is-effective-monoβis-regular-mono itself .map = record { map = id ; commutes = idr _ } im : Initial _ im .bot = itself im .hasβ₯ other = contr hom unique where hom : βHom _ _ itself other hom .Ξ± = tt hom .Ξ² = other .map hom .sq = trivial! unique : β x β hom β‘ x unique x = βHom-path _ _ refl (ext (intror refl β ap map (x .sq) β elimr refl))
Hence the characterisation of regular monomorphisms given in the introductory paragraph: In a category with pushouts, every regular monomorphism βis an isomorphismβ onto its image. In reality, it gives its own image!