module Cat.Diagram.Equaliser.RegularMono where
Regular monomorphisms🔗
A regular monomorphism is a morphism that behaves like an embedding, i.e. it is an isomorphism onto its image. Since images of arbitrary morphisms do not exist in every category, we must find a definition which implies this property but only speaks diagrammatically about objects directly involved in the definition.
The definition is as follows: A regular monomorphism is an equaliser of some pair of arrows
record is-regular-mono (f : Hom a b) : Type (o ⊔ ℓ) where no-eta-equality field {c} : Ob arr₁ arr₂ : Hom b c has-is-eq : is-equaliser C arr₁ arr₂ f open is-equaliser has-is-eq public
From the definition we can directly conclude that regular monomorphisms are in fact monomorphisms:
is-regular-mono→is-mono : is-monic f is-regular-mono→is-mono = is-equaliser→is-monic _ has-is-eq open is-regular-mono using (is-regular-mono→is-mono) public
Effective monomorphisms🔗
Proving that a map is a regular monomorphism involves finding two maps which it equalises, but if is a category with pushouts, there is often a canonical choice: The cokernel pair of that is, the pushout of along with itself. Morphisms which a) have a cokernel pair and b) equalise their cokernel pair are called effective monomorphisms.
record is-effective-mono (f : Hom a b) : Type (o ⊔ ℓ) where no-eta-equality field {cokernel} : Ob i₁ i₂ : Hom b cokernel is-cokernel-pair : is-pushout C f i₁ f i₂ has-is-equaliser : is-equaliser C i₁ i₂ f
Every effective monomorphism is a regular monomorphism, since it equalises the inclusions of its cokernel pair.
is-effective-mono→is-regular-mono : is-regular-mono f is-effective-mono→is-regular-mono = rm where open is-regular-mono rm : is-regular-mono f rm .c = _ rm .arr₁ = _ rm .arr₂ = _ rm .has-is-eq = has-is-equaliser
If has a cokernel pair, and it is a regular monomorphism, then it is also effective — it is the equaliser of its cokernel pair.
module _ {o ℓ} (C : Precategory o ℓ) where open Cat.Reasoning C open Initial open ↓Obj open ↓Hom open /-Obj open /-Hom
is-regular-mono→is-effective-mono : ∀ {a b} {f : Hom a b} → Pushout C f f → is-regular-mono C f → is-effective-mono C f is-regular-mono→is-effective-mono {f = f} cokern reg = mon where module f⊔f = Pushout cokern module reg = is-regular-mono reg
Let be the equaliser of By the universal property of the cokernel pair of we have a map such that and
phi : Hom f⊔f.coapex reg.c phi = f⊔f.universal reg.equal open is-effective-mono mon : is-effective-mono C f mon .cokernel = f⊔f.coapex mon .i₁ = f⊔f.i₁ mon .i₂ = f⊔f.i₂ mon .is-cokernel-pair = f⊔f.has-is-po mon .has-is-equaliser = eq where
To show that also has the universal property of the equaliser of suppose that also equalises the injections. Then we can calculate:
So equalises the same arrows that does, hence there is a universal map which commutes with “everything in sight”:
open is-equaliser eq : is-equaliser _ _ _ _ eq .equal = f⊔f.square eq .universal {F = F} {e' = e'} p = reg.universal p' where p' : reg.arr₁ ∘ e' ≡ reg.arr₂ ∘ e' p' = reg.arr₁ ∘ e' ≡˘⟨ ap (_∘ e') f⊔f.universal∘i₁ ⟩≡˘ (phi ∘ f⊔f.i₁) ∘ e' ≡⟨ extendr p ⟩≡ (phi ∘ f⊔f.i₂) ∘ e' ≡⟨ ap (_∘ e') f⊔f.universal∘i₂ ⟩≡ reg.arr₂ ∘ e' ∎ eq .factors = reg.factors eq .unique = reg.unique
If has a canonical choice of pushout along itself, then it suffices to check that it equalises those injections to show it is an effective mono.
equalises-cokernel-pair→is-effective-mono : ∀ {a b} {f : Hom a b} → (P : Pushout C f f) → is-equaliser C (P .Pushout.i₁) (P .Pushout.i₂) f → is-effective-mono C f equalises-cokernel-pair→is-effective-mono P eq = em where open is-effective-mono em : is-effective-mono _ _ em .cokernel = _ em .i₁ = _ em .i₂ = _ em .is-cokernel-pair = P .Pushout.has-is-po em .has-is-equaliser = eq
Images of regular monos🔗
Let be an effective mono, or, in a category with pushouts, a regular mono. We show that admits an image relative to the class of regular monomorphisms. The construction of the image is as follows: We let and factor as
This factorisation is very straightforwardly shown to be universal, as the code below demonstrates.
is-effective-mono→image : ∀ {a b} {f : Hom a b} → is-effective-mono C f → M-image C (is-regular-mono C , is-regular-mono→is-mono) f is-effective-mono→image {f = f} mon = im where module eff = is-effective-mono mon itself : ↓Obj _ _ itself .x = tt itself .y = cut f , eff.is-effective-mono→is-regular-mono itself .map = record { map = id ; commutes = idr _ } im : Initial _ im .bot = itself im .has⊥ other = contr hom unique where hom : ↓Hom _ _ itself other hom .α = tt hom .β = other .map hom .sq = trivial! unique : ∀ x → hom ≡ x unique x = ↓Hom-path _ _ refl (ext (intror refl ∙ ap map (x .sq) ∙ elimr refl))
Hence the characterisation of regular monomorphisms given in the introductory paragraph: In a category with pushouts, every regular monomorphism “is an isomorphism” onto its image. In reality, it gives its own image!