module Cat.Abelian.Instances.Functor where
module _ {o o' β β'} {A : Precategory o β} (π : Ab-category A) {B : Precategory o' β'} (β¬ : Ab-category B) where private module A = Ab-category π module B = Ab-category β¬ open Precategory open Ab-category open Ab-functor open _=>_
Ab-enriched functor categoriesπ
Recall that, for a pair of and we define the between them to be the functors which additionally preserve homwise addition1. We can, mimicking the construction of the ordinary functor category, construct a category consisting only of the and prove that it is also an
Ab-functors : Precategory _ _ Ab-functors .Ob = Ab-functor π β¬ Ab-functors .Hom F G = F .functor => G .functor Ab-functors .Hom-set _ _ = Nat-is-set Ab-functors .id = Cat[ A , B ] .Precategory.id Ab-functors ._β_ = Cat[ A , B ] .Precategory._β_ Ab-functors .idr = Cat[ A , B ] .Precategory.idr Ab-functors .idl = Cat[ A , B ] .Precategory.idl Ab-functors .assoc = Cat[ A , B ] .Precategory.assoc
We can calculate that the natural transformations between have a pointwise abelian group structure. The most important thing to verify is that the pointwise sum of natural transformations is natural, which follows from multilinearity of the composition operation.
[_,_]Ab : Ab-category Ab-functors [_,_]Ab .Abelian-group-on-hom F G = to-abelian-group-on grp where open make-abelian-group open Group-on module F = Ab-functor F module G = Ab-functor G grp : make-abelian-group (F .functor => G .functor) grp .mul f g .Ξ· x = f .Ξ· x B.+ g .Ξ· x grp .mul f g .is-natural x y h = (f .Ξ· y B.+ g .Ξ· y) B.β F.β h β‘Λβ¨ B.β-linear-l _ _ _ β©β‘Λ (f .Ξ· y B.β F.β h) B.+ (g .Ξ· y B.β F.β h) β‘β¨ apβ B._+_ (f .is-natural x y h) (g .is-natural x y h) β©β‘ (G.β h B.β f .Ξ· x) B.+ (G.β h B.β g .Ξ· x) β‘β¨ B.β-linear-r _ _ _ β©β‘ G.β h B.β (f .Ξ· x B.+ g .Ξ· x) β
Specifically, given we can distribute into the composite, apply naturality to both summands, and distribute out of the composite on the left. Similar computations establish that the pointwise inverse of natural transformations is natural.
grp .1g .Ξ· x = B.0m grp .1g .is-natural x y f = B.β-zero-l β sym (B.β-zero-r) grp .inv f .Ξ· x = B.Hom.inverse (f .Ξ· x) grp .inv f .is-natural x y g = B.Hom.inverse (f .Ξ· y) B.β F.β g β‘Λβ¨ B.β-negatel β©β‘Λ B.Hom.inverse β f .Ξ· y B.β F.β g β β‘β¨ ap! (f .is-natural x y g) β©β‘ B.Hom.inverse (G.β g B.β f .Ξ· x) β‘β¨ B.β-negater β©β‘ G.β g B.β B.Hom.inverse (f .Ξ· x) β grp .assoc _ _ _ = ext Ξ» _ β B.Hom.associative grp .idl _ = ext Ξ» x β B.Hom.idl grp .invl _ = ext Ξ» x β B.Hom.inversel grp .comm _ _ = ext Ξ» x β B.Hom.commutes grp .ab-is-set = Nat-is-set [_,_]Ab .β-linear-l f g h = ext Ξ» x β B.β-linear-l _ _ _ [_,_]Ab .β-linear-r f g h = ext Ξ» x β B.β-linear-r _ _ _
i.e.Β those functors for which, for all the extends to a group homomorphism.β©οΈ