module Algebra.Quasigroup.Instances.Initial where

The initial quasigroup🔗

The empty type trivially forms a quasigroup.

Empty-quasigroup :  {}  Quasigroup 
Empty-quasigroup = to-quasigroup ⊥-quasigroup where
  open make-quasigroup

  ⊥-quasigroup : make-quasigroup (Lift _ )
  ⊥-quasigroup .quasigroup-is-set = hlevel 2
  ⊥-quasigroup ._⋆_ ()
  ⊥-quasigroup ._⧵_ ()
  ⊥-quasigroup ._/_ ()
  ⊥-quasigroup ./-invl ()
  ⊥-quasigroup ./-invr ()
  ⊥-quasigroup .⧵-invr ()
  ⊥-quasigroup .⧵-invl ()

Moreover, the empty quasigroup is an initial object in the category of quasigroups, as there is a unique function out of the empty type.

Empty-quasigroup-is-initial : is-initial (Quasigroups ) Empty-quasigroup
Empty-quasigroup-is-initial A .centre .fst ()
Empty-quasigroup-is-initial A .centre .snd .is-quasigroup-hom.pres-⋆ ()
Empty-quasigroup-is-initial A .paths f = ext λ ()

Initial-quasigroup : Initial (Quasigroups )
Initial-quasigroup .Initial.bot = Empty-quasigroup
Initial-quasigroup .Initial.has⊥ = Empty-quasigroup-is-initial

In fact, the empty quasigroup is a strict initial object.

Initial-quasigroup-is-strict
  : is-strict-initial (Quasigroups ) Initial-quasigroup
Initial-quasigroup-is-strict =
  make-is-strict-initial (Quasigroups _) Initial-quasigroup $ λ A f  ext λ a 
  absurd (Lift.lower (f · a))