module 1Lab.Counterexamples.IsIso where
is-iso is not a propositionπ
We show that if is-iso
were a proposition, then
(x : A) β x β‘ x
would be contractible for any choice of
A
. Taking A
to be SΒΉ
, we show that this can not
be the case. Suppose that is-iso is a proposition.
module _ (iso-is-prop : β {β} {A B : Type β} {f : A β B} β is-prop (is-iso f)) where
First we characterise the type is-iso f
by showing that, if it
is inhabited, then it is equivalent to the centre of
A
, i.e. the loop-assigning maps of A
:
lemma : β {β} {A B : Type β} {f : A β B} β is-iso f β is-iso f β ((x : A) β x β‘ x) lemma {A = A} {B} {f} iiso = EquivJ (Ξ» _ f β is-iso (f .fst) β ((x : A) β x β‘ x)) (IsoβEquiv helper) (f , is-isoβis-equiv iiso) where
By equivalence
induction, it suffices to cover the case where f
is the
identity function. In that case, we can construct an isomorphism quite
readily, where the proof uses our assumption iso-is-prop
for convenience.
helper : Iso _ _ helper .fst iiso x = sym (iiso .is-iso.linv x) β iiso .is-iso.rinv x helper .snd .is-iso.inv x = iso (Ξ» x β x) x (Ξ» _ β refl) helper .snd .is-iso.rinv p = funext Ξ» x β β-idl _ helper .snd .is-iso.linv x = iso-is-prop _ _
We thus have that is-iso id β ((x : A) β x β‘ x)
- since
the former is a prop (by assumption), then so is the latter:
is-prop-loops : β {β} {A : Type β} β is-prop ((x : A) β x β‘ x) is-prop-loops {A = A} = equivβis-hlevel 1 (helper .fst) (helper .snd) iso-is-prop where helper = lemma {f = Ξ» (x : A) β x} (iso (Ξ» x β x) (Ξ» x β refl) (Ξ» x β refl))
Thus, it suffices to choose a type for which
(x : A) β x β‘ x
has two distinct elements. We go with the
circle, SΒΉ
:
Β¬is-prop-loops : Β¬ is-prop ((x : SΒΉ) β x β‘ x) Β¬is-prop-loops prop = reflβ loop $ happly (prop (Ξ» x β refl) Ξ» { base β loop ; (loop i) j β hcomp (β i β¨ β j) Ξ» where k (k = i0) β loop (i β¨ j) k (i = i0) β loop j k (i = i1) β loop (k β§ j) k (j = i0) β loop i k (j = i1) β loop (k β§ i) }) base
Hence, a contradiction:
contra : β₯ contra = Β¬is-prop-loops is-prop-loops