open import 1Lab.Prelude

open import Data.List.Membership
open import Data.Fin.Product
open import Data.List.Sigma
open import Data.List.Base
open import Data.Fin.Base

module Data.List.Pi where

private variable
   ℓ' : Level
  A B C : Type 
  P Q : A  Type 

Pi : (xs : List A)  (A  Type ℓ')  Type _
Pi {ℓ' = ℓ'} xs P = Πᶠ {length xs}  _  ℓ'}  i  P (xs ! i))

pi : (xs : List A) (ys :  a  List (P a))  List (Pi xs P)
pi [] ys = tt  []
pi (x  xs) ys = sigma (ys x)  _  pi xs ys)

Pi' : (xs : List A)  (A  Type ℓ')  Type _
Pi' xs P =  a  a ∈ₗ xs  P a

module _ {A : Type } (P : A  Type ℓ') where
  to-pi' :  {xs}  Pi xs P  Pi' xs P
  to-pi' (x , xs) a (here p) = substᵢ P (symᵢ p) x
  to-pi' (x , xs) a (there h) = to-pi' xs a h

  from-pi' :  {xs}  Pi' xs P  Pi xs P
  from-pi' {[]} x = tt
  from-pi' {x₁  xs} x = x _ (here reflᵢ) , from-pi' {xs}  _ h  x _ (there h))

  to-from-pi' :  {xs} (p : Pi xs P)  from-pi' (to-pi' p)  p
  to-from-pi' {[]} p = refl
  to-from-pi' {x  xs} p = refl ,ₚ to-from-pi' {xs} (p .snd)

  from-to-pi' :  {xs} (p : Pi' xs P)  to-pi' (from-pi' p)  p
  from-to-pi' p i a (here reflᵢ) = p a (here reflᵢ)
  from-to-pi' p i a (there x) = from-to-pi'  a h  p a (there h)) i a x

  pi-member'
    : {A : Type } {P : A  Type ℓ'} (xs : List A) (ys :  a  List (P a)) {e : Pi xs P}
     (∀ h  indexₚ e h ∈ₗ ys (xs ! h))  e ∈ₗ pi xs ys
  pi-member' [] ys {tt} p = here reflᵢ
  pi-member' (x  xs) ys {p , ps} q = sigma-member {xs = ys x} {ys = λ _  pi xs ys} (q fzero) (pi-member' xs ys (q  fsuc))

  member-pi'
    : {A : Type } {P : A  Type ℓ'} (xs : List A) (ys :  a  List (P a)) {e : Pi xs P}
     (α : e ∈ₗ pi xs ys)  fibre (pi-member' xs ys) α
  member-pi' [] ys (here p) =  h  absurd (Fin-absurd h)) , ap here (is-set→is-setᵢ (hlevel 2) _ _ reflᵢ p)
  member-pi' (x  xs) ys elt =
    let
      α = member-sigmaₗ (ys x)  _  pi xs ys) elt
      β = member-sigmaᵣ (ys x)  _  pi xs ys) elt

      (f , coh) = member-pi' xs ys β

      g = Fin-cases α λ h  member-pi' xs ys β .fst h
    in g , ap (sigma-member α) coh  member-sigma-view (ys x)  _  pi xs ys) elt .snd