module Cat.Internal.Morphism {o β} {C : Precategory o β} (β : Internal-cat C) where
open Precategory C open Cat.Internal.Base C open Cat.Internal.Reasoning β private variable Ξ : Ob w x y z : Hom Ξ Cβ
Morphisms in internal categoriesπ
This module defines the internal versions of monomorphisms, epimorphisms, and isomorphisms. These definitions mirror their 1-categorical counterparts, so we do not comment on them further.
Monosπ
is-monici : Homi x y β Type _ is-monici {x = x} f = β {w} β (g h : Homi w x) β f βi g β‘ f βi g β g β‘ h is-monici-is-prop : β (f : Homi x y) β is-prop (is-monici f) is-monici-is-prop f x y i {w} g h p = Internal-hom-set g h (x g h p) (y g h p) i record _βͺi_ (x y : Hom Ξ Cβ) : Type β where field mori : Homi x y monici : is-monici mori
Episπ
is-epici : Homi x y β Type _ is-epici {y = y} f = β {z} β (g h : Homi y z) β g βi f β‘ h βi f β g β‘ h is-epici-is-prop : β (f : Homi x y) β is-prop (is-epici f) is-epici-is-prop f x y i {z} g h p = Internal-hom-set g h (x g h p) (y g h p) i record _β i_ (x y : Hom Ξ Cβ) : Type β where field mori : Homi x y epici : is-epici mori
Isomorphismsπ
record Inversesi (f : Homi x y) (g : Homi y x) : Type β where field invli : f βi g β‘ idi y invri : g βi f β‘ idi x record is-invertiblei (f : Homi x y) : Type β where field invi : Homi y x inversesi : Inversesi f invi open Inversesi inversesi public record _β i_ (x y : Hom Ξ Cβ) : Type β where field toi : Homi x y fromi : Homi y x inversesi : Inversesi toi fromi open Inversesi inversesi public open _β i_ public