module Cat.Instances.OFE.Closed where
Function OFEsπ
If and are OFEs, then so is the space of non-expansive functions this makes the category OFE into a Cartesian closed category.
open OFE-Notation module _ {βa βb βa' βb'} {A : Type βa} {B : Type βb} (O : OFE-on βa' A) (P : OFE-on βb' B) where private instance _ = O _ = P module O = OFE-on O module P = OFE-on P
Function-OFE : OFE-on (βa β βb') (O ββΏα΅ P) Function-OFE .within n f g = β x β f .map x β[ n ] g .map x Function-OFE .has-is-ofe .has-is-prop n x y = hlevel 1 Function-OFE .has-is-ofe .β-refl n x = P.β-refl n Function-OFE .has-is-ofe .β-sym n p x = P.β-sym n (p x) Function-OFE .has-is-ofe .β-trans n p q x = P.β-trans n (p x) (q x) Function-OFE .has-is-ofe .bounded f g x = P.bounded (f .map x) (g .map x) Function-OFE .has-is-ofe .step n f g Ξ± x = P.step n (f .map x) (g .map x) (Ξ± x) Function-OFE .has-is-ofe .limit f g Ξ± = Nonexp-ext Ξ» x β P.limit (f .map x) (g .map x) (Ξ» n β Ξ± n x)