module Cat.Diagram.Colimit.Cocone where
Colimits via cocones🔗
As noted in the main page on colimits, most introductory texts opt to
define colimits via categorical gadgets called cocones.
A Cocone
over
is given by an object (the coapex
) together with a
family of maps ψ
— one for each object in
the indexing category J
— such that “everything in sight
commutes”.
module _ {J : Precategory o ℓ} {C : Precategory o' ℓ'} (F : Functor J C) where private module C = Cat.Reasoning C module J = Precategory J module F = Functor F
record Cocone : Type (o ⊔ ℓ ⊔ o' ⊔ ℓ') where no-eta-equality constructor cocone field coapex : C.Ob ψ : (x : J.Ob) → C.Hom (F.₀ x) coapex commutes : ∀ {x y} (f : J.Hom x y) → ψ y C.∘ F.₁ f ≡ ψ x
open Cocone Cocone-path : {x y : Cocone} → (p : x .coapex ≡ y .coapex) → (∀ o → PathP (λ i → C.Hom (F.₀ o) (p i)) (ψ x o) (ψ y o)) → x ≡ y Cocone-path p q i .coapex = p i Cocone-path p q i .ψ o = q o i Cocone-path {x = x} {y = y} p q i .commutes {x = a} {y = b} f = is-prop→pathp (λ i → C.Hom-set _ _ (q b i C.∘ F.₁ f) (q a i)) (x .commutes f) (y .commutes f) i
Cocone maps🔗
To express the universal property of a colimit in terms of cocones, we now have to define the notion of cocone homomorphism. We define a cocone homomorphism to be a map between the coapices which commutes with the family
record Cocone-hom (x y : Cocone) : Type (o ⊔ ℓ') where no-eta-equality constructor cocone-hom field hom : C.Hom (x .coapex) (y .coapex) commutes : ∀ o → hom C.∘ x .ψ o ≡ y .ψ o
private unquoteDecl eqv = declare-record-iso eqv (quote Cocone-hom) open Cocone-hom Cocone-hom-path : ∀ {x y} {f g : Cocone-hom x y} → f .hom ≡ g .hom → f ≡ g Cocone-hom-path p i .hom = p i Cocone-hom-path {x = x} {y = y} {f = f} {g = g} p i .commutes o j = is-set→squarep (λ i j → C.Hom-set _ _) (λ j → p j C.∘ x .ψ o) (f .commutes o) (g .commutes o) refl i j
Since cocone homomorphisms are closed under composition in the base category, it’s immediate that they form a category.
Cocones : Precategory _ _ Cocones = cat where open Precategory compose : ∀ {x y z} → Cocone-hom y z → Cocone-hom x y → Cocone-hom x z compose K L .hom = K .hom C.∘ L .hom compose {x = x} {y = y} {z = z} K L .commutes o = (K .hom C.∘ L .hom) C.∘ x .ψ o ≡⟨ C.pullr (L .commutes o) ⟩≡ K .hom C.∘ y .ψ o ≡⟨ K .commutes o ⟩≡ z .ψ o ∎
cat : Precategory _ _ cat .Ob = Cocone cat .Hom = Cocone-hom cat .id = cocone-hom C.id (λ _ → C.idl _) cat ._∘_ = compose cat .idr f = Cocone-hom-path (C.idr (f .hom)) cat .idl f = Cocone-hom-path (C.idl (f .hom)) cat .assoc f g h = Cocone-hom-path (C.assoc (f .hom) (g .hom) (h .hom)) cat .Hom-set x y = Iso→is-hlevel! 2 eqv
Initial cocones as colimits🔗
A cocone over some diagram contains the same data as natural transformation from to a constant functor. Since we have defined a colimit to consist of (a functor equipped with) a natural transformation into a constant functor, there is an equivalence between the cocones defined here and those considered in the definition of colimit.
Cocone→cocone : (K : Cocone) → F => Const (Cocone.coapex K) Cocone→cocone K .η = K .Cocone.ψ Cocone→cocone K .is-natural x y f = K .Cocone.commutes f ∙ sym (C.idl _)
We can then rephrase the universality from the definition of left Kan extension by asking that a particular cocone be initial in the category we have just constructed.
is-initial-cocone→is-colimit : ∀ {K : Cocone} → is-initial Cocones K → is-colimit F (Cocone.coapex K) (Cocone→cocone K) is-initial-cocone→is-colimit {K = K} init = to-is-colimitp colim refl where open make-is-colimit open Cocone open Cocone-hom colim : make-is-colimit F (Cocone.coapex K) colim .ψ = K .ψ colim .commutes = K .commutes colim .universal eta p = init (cocone _ eta p) .centre .hom colim .factors eta p = init (cocone _ eta p) .centre .commutes _ colim .unique eta p other q = ap hom (sym (init (cocone _ eta p) .paths (cocone-hom other q)))
To finish concretising the correspondence, note that this process is invertible: From a colimit, we can extract an initial cocone.
is-colimit→is-initial-cocone : ∀ {x} {eta : F => Const x} → (L : is-colimit F x eta) → is-initial Cocones (cocone x (is-colimit.ψ L) (is-colimit.commutes L))
The proof consists of more data shuffling, so we omit it.
is-colimit→is-initial-cocone {x = x} L K = init where module L = is-colimit L module K = Cocone K open Cocone-hom init : is-contr (Cocone-hom (cocone x L.ψ L.commutes) K) init .centre .hom = L.universal K.ψ K.commutes init .centre .commutes _ = L.factors K.ψ K.commutes init .paths f = Cocone-hom-path (sym (L.unique K.ψ K.commutes (f .hom) (f .commutes)))