module Cat.Abelian.NAry {o β} {C : Precategory o β} (A : Ab-category C) where
n-Ary operations on Hom-groupsπ
We instantiate the theory of n-ary sums in a group to the special case of the abelian groups of an category. In particular, we show that the linearity of function composition extends to distribution over arbitrary sums.
private module A = Ab-category A ββ : β {x y} n β (Fin n β A.Hom x y) β A.Hom x y ββ n f = β {n = n} (AbelianβGroup-on (A.Abelian-group-on-hom _ _)) f β-β-left : β {j} {A B C} (f : Fin j β A.Hom A B) {g : A.Hom B C} β g A.β ββ j f β‘ ββ j (Ξ» i β g A.β f i) β-β-left {zero} f = A.β-zero-r β-β-left {suc j} f {g = g} = g A.β (f 0 A.+ ββ j (Ξ» i β f (fsuc i))) β‘Λβ¨ A.β-linear-r _ _ _ β©β‘Λ g A.β f 0 A.+ β g A.β ββ j (Ξ» i β f (fsuc i)) β β‘β¨ ap! (β-β-left {j} _) β©β‘ g A.β f 0 A.+ ββ j (Ξ» i β g A.β f (fsuc i)) β β-β-right : β {j} {A B C} (f : Fin j β A.Hom B C) {g : A.Hom A B} β ββ j f A.β g β‘ ββ j (Ξ» i β f i A.β g) β-β-right {zero} f = A.β-zero-l β-β-right {suc j} f {g} = (f 0 A.+ ββ j (Ξ» i β f (fsuc i))) A.β g β‘Λβ¨ A.β-linear-l _ _ _ β©β‘Λ f 0 A.β g A.+ β ββ j (Ξ» i β f (fsuc i)) A.β g β β‘β¨ ap! (β-β-right {j} _) β©β‘ (f 0 A.β g A.+ ββ j (Ξ» i β f (fsuc i) A.β g)) β