module Order.Instances.Rational where
The usual ordering on the rationals🔗
Ratio-poset : Poset lzero lzero Ratio-poset .P.Ob = Ratio Ratio-poset .P._≤_ = _≤_ Ratio-poset .P.≤-thin = hlevel 1 Ratio-poset .P.≤-refl = ≤-refl Ratio-poset .P.≤-trans = ≤-trans Ratio-poset .P.≤-antisym = ≤-antisym Ratio-is-dec-total : is-decidable-total-order Ratio-poset Ratio-is-dec-total = from-weakly-total (≤-is-weakly-total _ _)