module Order.Instances.Int where
The usual ordering on the integersπ
This module deals with noting down facts about the usual ordering on
the set of integers. Most of the proofs are in the module Data.Int.Order
.
Int-poset : Poset lzero lzero Int-poset .P.Ob = Int Int-poset .P._β€_ = _β€_ Int-poset .P.β€-thin = hlevel 1 Int-poset .P.β€-refl = β€-refl Int-poset .P.β€-trans = β€-trans Int-poset .P.β€-antisym = β€-antisym
Itβs worth pointing out that the ordering on integers is a decidable total order, essentially because the ordering on naturals also is.
Int-is-dec-total : is-decidable-total-order Int-poset Int-is-dec-total = from-weakly-total (β€-is-weakly-total _ _)