module Order.Instances.Int where
The usual ordering on the integers🔗
This module deals with noting down facts about the usual ordering on
the set of integers. Most of the proofs are in the module Data.Int.Order
.
Int-poset : Poset lzero lzero Int-poset .P.Ob = Int Int-poset .P._≤_ = _≤_ Int-poset .P.≤-thin = hlevel 1 Int-poset .P.≤-refl = ≤-refl Int-poset .P.≤-trans = ≤-trans Int-poset .P.≤-antisym = ≤-antisym
It’s worth pointing out that the ordering on integers is a decidable total order, essentially because the ordering on naturals also is.
Int-is-dec-total : is-decidable-total-order Int-poset Int-is-dec-total = from-weakly-total (≤-is-weakly-total _ _)