module Order.Instances.Int where

The usual ordering on the integers🔗

This module deals with noting down facts about the usual ordering on the set of integers. Most of the proofs are in the module Data.Int.Order.

Int-poset : Poset lzero lzero
Int-poset .P.Ob        = Int
Int-poset .P._≤_       = _≤_
Int-poset .P.≤-thin    = hlevel 1
Int-poset .P.≤-refl    = ≤-refl
Int-poset .P.≤-trans   = ≤-trans
Int-poset .P.≤-antisym = ≤-antisym

It’s worth pointing out that the ordering on integers is a decidable total order, essentially because the ordering on naturals also is.

Int-is-dec-total : is-decidable-total-order Int-poset
Int-is-dec-total = from-weakly-total (≤-is-weakly-total _ _)