module Order.Diagram.Fixpoint {o â„“} (P : Poset o â„“) where
Least fixpoints🔗
Let be a poset, and be a monotone map. We say that has a least fixpoint if there exists some such that and for every other such that
record is-least-fixpoint (f : Posets.Hom P P) (x : Ob) : Type (o ⊔ ℓ) where no-eta-equality field fixed : f .hom x ≡ x least : ∀ (y : Ob) → f .hom y ≡ y → x ≤ y record Least-fixpoint (f : Posets.Hom P P) : Type (o ⊔ ℓ) where no-eta-equality field fixpoint : Ob has-least-fixpoint : is-least-fixpoint f fixpoint open is-least-fixpoint has-least-fixpoint public open is-least-fixpoint
Least fixed points are unique, so the type of least fixpoints of is a proposition.
least-fixpoint-unique : ∀ {f : Posets.Hom P P} {x y} → is-least-fixpoint f x → is-least-fixpoint f y → x ≡ y least-fixpoint-unique x-fix y-fix = ≤-antisym (x-fix .least _ (y-fix .fixed)) (y-fix .least _ (x-fix .fixed)) is-least-fixpoint-is-prop : ∀ {f : Posets.Hom P P} {x} → is-prop (is-least-fixpoint f x) is-least-fixpoint-is-prop {f = f} {x = x} p q i .fixed = Ob-is-set (f .hom x) x (p .fixed) (q .fixed) i is-least-fixpoint-is-prop {f = f} {x = x} p q i .least y y-fix = is-prop→pathp (λ i → ≤-thin) (p .least y y-fix) (q .least y y-fix) i Least-fixpoint-is-prop : ∀ {f : Posets.Hom P P} → is-prop (Least-fixpoint f) Least-fixpoint-is-prop {f = f} p q = p≡q where module p = Least-fixpoint p module q = Least-fixpoint q path : p.fixpoint ≡ q.fixpoint path = least-fixpoint-unique p.has-least-fixpoint q.has-least-fixpoint p≡q : p ≡ q p≡q i .Least-fixpoint.fixpoint = path i p≡q i .Least-fixpoint.has-least-fixpoint = is-prop→pathp (λ i → is-least-fixpoint-is-prop {x = path i}) p.has-least-fixpoint q.has-least-fixpoint i