module Cat.Diagram.Colimit.Initial {o h} (C : Precategory o h) where
Initial objects are colimits🔗
An initial object is equivalently defined as a colimit of the empty diagram.
is-colimit→is-initial : ∀ {T : Ob} {eta : ¡F => Const T} → is-colimit {C = C} ¡F T eta → is-initial C T is-colimit→is-initial colim Y = contr (colim.universal (λ ()) (λ ())) (λ _ → sym (colim.unique _ _ _ λ ())) where module colim = is-colimit colim is-initial→is-colimit : ∀ {T : Ob} {F : Functor ⊥Cat C} → is-initial C T → is-colimit {C = C} F T ¡nt is-initial→is-colimit {T} {F} init = to-is-colimitp mc λ {} where open make-is-colimit mc : make-is-colimit F T mc .ψ () mc .commutes () mc .universal _ _ = init _ .centre mc .factors {} mc .unique _ _ _ _ = sym (init _ .paths _) Colimit→Initial : Colimit {C = C} ¡F → Initial C Colimit→Initial colim .bot = Colimit.coapex colim Colimit→Initial colim .has⊥ = is-colimit→is-initial (Colimit.has-colimit colim) Initial→Colimit : ∀ {F : Functor ⊥Cat C} → Initial C → Colimit {C = C} F Initial→Colimit init = to-colimit (is-initial→is-colimit (init .has⊥))