open import 1Lab.Prelude

open import Algebra.Group

module Algebra.Group.Cayley {ℓ} (G : Group ℓ) where

open Group-on (G .snd) renaming (underlying-set to G-set)


# Cayley’s Theorem🔗

Cayley’s theorem says that any group $G$ admits a representation as a subgroup of a symmetric group, specifically the symmetric group acting on the underlying set of $G$.

To start with, we note that any element $x$ of $G$ determines a bijection on the underlying set of $G$, by multiplication with $x$ on the left. The inverse of this bijection is given by multiplication with $x^{-1}$, and the proof that these are in fact inverse functions are given by the group laws:

Cayley : G .fst → G .fst ≃ G .fst
Cayley x = Iso→Equiv bij where
bij : Iso _ _
bij .fst y = x ⋆ y
bij .snd .is-iso.inv y = x ⁻¹ ⋆ y
bij .snd .is-iso.rinv y =
x ⋆ (x ⁻¹ ⋆ y) ≡⟨ cancell inverser ⟩≡
y              ∎
bij .snd .is-iso.linv y =
x ⁻¹ ⋆ (x ⋆ y) ≡⟨ cancell inversel ⟩≡
y              ∎


We then show that this map is a group homomorphism from $G$ to $\id{Sym}(G)$:

Cayley-is-hom : Group-hom G (Sym G-set) Cayley
Cayley-is-hom .Group-hom.pres-⋆ x y = Σ-prop-path is-equiv-is-prop (funext lemma) where
lemma : (e : G .fst) → (x ⋆ y) ⋆ e ≡ x ⋆ (y ⋆ e)
lemma e = sym associative


Finally, we show that this map is injective; Thus, $G$ embeds as a subgroup of $\id{Sym}(G)$ (the image of Cayley).

Cayley-injective : injective Cayley
Cayley-injective {x} {y} eqvs-equal =
x                   ≡⟨ sym idr ⟩≡
x ⋆ unit            ≡⟨⟩
Cayley x .fst unit  ≡⟨ happly (ap fst eqvs-equal) unit ⟩≡
Cayley y .fst unit  ≡⟨⟩
y ⋆ unit            ≡⟨ idr ⟩≡
y                   ∎