open import Cat.Instances.Functor
open import Cat.Instances.Product
open import Cat.Prelude

import Cat.Functor.Reasoning as Fr
import Cat.Reasoning

open Functor
open _=>_

module Cat.Instances.Functor.Compose where


# Functoriality of functor composition🔗

When the operation of functor composition, $(F, G) \mapsto F \circ G$, is seen as happening not only to functors but to whole functor categories, then it is itself functorial. This is a bit mind-bending at first, but this module will construct the functor composition functors. There’s actually a family of three related functors we’re interested in:

• The functor composition functor itself, having type $[B, C] \times [A, B] \to [A,C]$;
• The precomposition functor associated with any $p : C \to C'$, which will be denoted $p_! : [C', D] \to [C,D]$ in TeX and _! in Agda;
• The postcomposition functor associated with any $p : C \to C'$, which will be denoted $p^* : [A,C] \to [A,C']$; In the code, that’s _^*.

Note that the precomposition functor $p_!$ is necessarily “contravariant” when compared with $p$, in that it points in the opposite direction to $p$.

F∘-functor : Functor (Cat[ B , C ] ×ᶜ Cat[ A , B ]) Cat[ A , C ]
F∘-functor {C = C} = go module F∘-f where
private module C = Cat.Reasoning C
go : Functor _ _
go .F₀ (F , G) = F F∘ G

go .F₁ {y = y , _} (n1 , n2) .η x = y .F₁ (n2 .η _) C.∘ n1 .η _

go .F₁ {x = F , G} {y = W , X} (n1 , n2) .is-natural _ _ f =
(W .F₁ (n2 .η _) C.∘ n1 .η _) C.∘ F .F₁ (G .F₁ f) ≡⟨ C.pullr (n1 .is-natural _ _ _) ⟩≡
W .F₁ (n2 .η _) C.∘ W .F₁ (G .F₁ f) C.∘ n1 .η _   ≡⟨ C.extendl (W.weave (n2 .is-natural _ _ _)) ⟩≡
W .F₁ (X .F₁ f) C.∘ W .F₁ (n2 .η _) C.∘ n1 .η _   ∎
where module W = Fr W

go .F-id {x} = Nat-path λ _ → C.idr _ ∙ x .fst .F-id
go .F-∘ {x} {y , _} {z , _} (f , _) (g , _) = Nat-path λ _ →
z .F₁ _ C.∘ f .η _ C.∘ g .η _                 ≡⟨ C.pushl (z .F-∘ _ _) ⟩≡
z .F₁ _ C.∘ z .F₁ _ C.∘ f .η _ C.∘ g .η _     ≡⟨ C.extend-inner (sym (f .is-natural _ _ _)) ⟩≡
z .F₁ _ C.∘ f .η _ C.∘ y .F₁ _ C.∘ g .η _     ≡⟨ C.pulll refl ⟩≡
(z .F₁ _ C.∘ f .η _) C.∘ (y .F₁ _ C.∘ g .η _) ∎

{-# DISPLAY F∘-f.go = F∘-functor #-}


Before setting up the pre/post-composition functors, we define their action on morphisms (natural transformations) first, called whiskerings, first. The mnemonic for triangles is that the base points towards the side that does not change, so in (e.g.) $f \blacktriangleright \theta$, the $f$ is unchanging: this expression has type $fg \to fh$, as long as $\theta : g \to h$.

_◂_ : F => G → (H : Functor C D) → F F∘ H => G F∘ H
_◂_ nt H .η x = nt .η _
_◂_ nt H .is-natural x y f = nt .is-natural _ _ _

_▸_ : (H : Functor E C) → F => G → H F∘ F => H F∘ G
_▸_ H nt .η x = H .F₁ (nt .η x)
_▸_ H nt .is-natural x y f =
sym (H .F-∘ _ _) ∙ ap (H .F₁) (nt .is-natural _ _ _) ∙ H .F-∘ _ _


With the whiskerings already defined, defining $p_!$ and $p^*$ is easy:

module _ (p : Functor C C′) where
_! : Functor Cat[ C′ , D ] Cat[ C , D ]
_! .F₀ G    = G F∘ p
_! .F₁ θ    = θ ◂ p
_! .F-id    = Nat-path λ _ → refl
_! .F-∘ f g = Nat-path λ _ → refl

_^* : Functor Cat[ D , C ] Cat[ D , C′ ]
_^* .F₀ G    = p F∘ G
_^* .F₁ θ    = p ▸ θ
_^* .F-id    = Nat-path λ _ → p .F-id
_^* .F-∘ f g = Nat-path λ _ → p .F-∘ _ _