open import 1Lab.Prelude

open import Algebra.Semilattice

open import Cat.Functor.Equivalence
open import Cat.Functor.Base
open import Cat.Prelude
open import Cat.Thin

module Algebra.Lattice where


A lattice (A,∧,∨)(A, \land, \lor) is a pair of semilattices (A,∧)(A, \land) and (A,∨)(A, \lor) which β€œfit together” with equations specifying that ∧\land and ∨\lor are duals, called absorption laws.

record is-lattice (_∧_ : A β†’ A β†’ A) (_∨_ : A β†’ A β†’ A) : Type (level-of A) where
    has-meets : is-semilattice _∧_
    has-joins : is-semilattice _∨_
We rename the fields of has-meets and has-joins so they refer to the operator in their name, and hide anything extra from the hierarchy.
  open is-semilattice has-meets public
    renaming ( associative to ∧-associative
             ; commutative to ∧-commutative
             ; idempotent to ∧-idempotent
    hiding ( has-is-magma ; has-is-semigroup )

  open is-semilattice has-joins public
    renaming ( associative to ∨-associative
             ; commutative to ∨-commutative
             ; idempotent to ∨-idempotent
    hiding ( underlying-set ; has-is-magma ; has-is-set ; magma-hlevel )
    ∧-absorbs-∨ : βˆ€ {x y} β†’ (x ∧ (x ∨ y)) ≑ x
    ∨-absorbs-∧ : βˆ€ {x y} β†’ (x ∨ (x ∧ y)) ≑ x

A lattice structure equips a type AA with two binary operators, the meet ∧\land and join ∨\lor, such that (A,∧,∨)(A, \land, \lor) is a lattice. Since being a semilattice includes being a set, this means that being a lattice is a property of (A,∧,∨)(A, \land, \lor):

private unquoteDecl eqv = declare-record-iso eqv (quote is-lattice)

  H-Level-is-lattice : βˆ€ {M J : A β†’ A β†’ A} {n} β†’ H-Level (is-lattice M J) (suc n)
  H-Level-is-lattice = prop-instance Ξ» x β†’
    let open is-lattice x in Iso→is-hlevel 1 eqv (hlevel 1) x

record Lattice-on (A : Type β„“) : Type β„“ where
    _L∧_ : A β†’ A β†’ A
    _L∨_ : A β†’ A β†’ A

  infixr 40 _L∧_
  infixr 30 _L∨_

    has-is-lattice : is-lattice _L∧_ _L∨_

  open is-lattice has-is-lattice public

  Lattice-onβ†’is-meet-semi : is-semilattice _L∧_
  Lattice-on→is-meet-semi = has-meets

  Lattice-onβ†’is-join-semi : is-semilattice _L∨_
  Lattice-on→is-join-semi = has-joins

open Lattice-on using (Lattice-on→is-meet-semi ; Lattice-on→is-join-semi) public

Lattice : βˆ€ β„“ β†’ Type (lsuc β„“)
Lattice β„“ = Ξ£ _ (Lattice-on {β„“ = β„“})

Since the absorption laws are property, not structure, a lattice homomorphism turns out to be a function which is homomorphic for both semilattice structures, i.e.Β one that independently preserves meets and joins.

record Lattice→ (A B : Lattice ℓ) (f : A .fst → B .fst) : Type ℓ where
    module A = Lattice-on (A .snd)
    module B = Lattice-on (B .snd)

    pres-∧ : βˆ€ x y β†’ f (x A.L∧ y) ≑ f x B.L∧ f y
    pres-∨ : βˆ€ x y β†’ f (x A.L∨ y) ≑ f x B.L∨ f y

Lattice≃ : (A B : Lattice β„“) (f : A .fst ≃ B .fst) β†’ Type β„“
Lattice≃ A B = Latticeβ†’ A B ∘ fst


We already know that a given semilattice structure can induce one of two posets, depending on whether the semilattice operator is being considered as equipping the poset with meets or joins. We’d then expect that a lattice, having two semi-lattices, would have four poset structures. However, there are only two, which we call the β€œcovariant” and β€œcontravariant” orderings.

Lattice→covariant-on : Lattice-on A → Poset (level-of A) (level-of A)
Lattice→covariant-on lat = Semilattice-on→Meet-on (Lattice-on→is-meet-semi lat)

Lattice→contravariant-on : Lattice-on A → Poset (level-of A) (level-of A)
Lattice→contravariant-on lat = Semilattice-on→Join-on (Lattice-on→is-meet-semi lat)

Above, the β€œcovariant order” is obtaining by considering the (A,∧)(A, \land) semilattice as inducing meets on the poset (hence the operator being called ∧\land). It can also be obtained in a dual way, by considering that (A,∨)(A, \lor) induces joins on the poset. By the absorption laws, these constructions give rise to the same poset; We start by defining a monotone map (that is, a Functor) between the two possibilities:

  : (l : Lattice-on A)
  β†’ Monotone-map
      (Semilattice-on→Meet-on (Lattice-on→is-meet-semi l))
      (Semilattice-on→Join-on (Lattice-on→is-join-semi l))
covariant-order-map {A = A} l = F where
  open Lattice-on l
    hiding (Lattice-on→is-join-semi ; Lattice-on→is-meet-semi)

  F : Monotone-map (Semilattice-on→Meet-on (Lattice-on→is-meet-semi l))
                   (Semilattice-on→Join-on (Lattice-on→is-join-semi l))
  F .Fβ‚€ = id
  F .F₁ {x} {y} p = q where abstract
    q : y ≑ x L∨ y
    q =
      y               β‰‘βŸ¨ sym ∨-absorbs-∧ βŸ©β‰‘
      y L∨ ⌜ y L∧ x ⌝ β‰‘βŸ¨ ap! ∧-commutative βŸ©β‰‘
      y L∨ ⌜ x L∧ y ⌝ β‰‘Λ˜βŸ¨ apΒ‘ p βŸ©β‰‘Λ˜
      y L∨ x          β‰‘βŸ¨ ∨-commutative βŸ©β‰‘
      x L∨ y          ∎
  F .F-id = has-is-set _ _ _ _
  F .F-∘ _ _ = has-is-set _ _ _ _

We now show that this functor is an equivalence: It is fully faithful and split essentially surjective.

  : (l : Lattice-on A) β†’ is-equivalence (covariant-order-map l)
covariant-order-map-is-equivalence l =
  ff+split-eso→is-equivalence ff eso
    open Lattice-on l hiding (Lattice-on→is-join-semi)
        (Semilattice-on→Join-on (Lattice-on→is-join-semi l) .Poset.underlying)
      as D

A tiny calculation shows that this functor is fully faithful, and essential surjectivity is immediate:

    ff : is-fully-faithful (covariant-order-map l)
    ff {x} {y} .is-eqv p .centre .fst =
      x               β‰‘βŸ¨ sym ∧-absorbs-∨ βŸ©β‰‘
      x L∧ ⌜ x L∨ y ⌝ β‰‘Λ˜βŸ¨ apΒ‘ p βŸ©β‰‘Λ˜
      x L∧ y          ∎
    ff .is-eqv y .centre .snd = has-is-set _ _ _ _
    ff .is-eqv y .paths x =
      Ξ£-path (has-is-set _ _ _ _)
             (is-prop→is-set (has-is-set _ _) _ _ _ _)

    eso : is-split-eso (covariant-order-map l)
    eso y .fst = y
    eso y .snd =
      D.make-iso (sym ∨-idempotent) (sym ∨-idempotent)
        (has-is-set _ _ _ _)
        (has-is-set _ _ _ _)